收藏 分享(赏)

2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx

上传人:a**** 文档编号:640873 上传时间:2025-12-12 格式:DOCX 页数:28 大小:544.88KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第1页
第1页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第2页
第2页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第3页
第3页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第4页
第4页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第5页
第5页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第6页
第6页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第7页
第7页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第8页
第8页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第9页
第9页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第10页
第10页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第11页
第11页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第12页
第12页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第13页
第13页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第14页
第14页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第15页
第15页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第16页
第16页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第17页
第17页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第18页
第18页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第19页
第19页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第20页
第20页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第21页
第21页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第22页
第22页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第23页
第23页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第24页
第24页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第25页
第25页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第26页
第26页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第27页
第27页 / 共28页
2022-2023学年度人教版九年级数学上册期末测评试题 A卷(解析卷).docx_第28页
第28页 / 共28页
亲,该文档总共28页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末测评试题 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、已知关于x的方程有一个根为1,则方程的另一个根为()A-1B1C2D-2

2、2、如图,已知是的两条切线,A,B为切点,线段交于点M给出下列四种说法:;四边形有外接圆;M是外接圆的圆心,其中正确说法的个数是()A1B2C3D43、二次函数yax2+bx+c的部分图象如图所示,由图象可知该抛物线与x轴的交点坐标是()A(1,0)和(5,0)B(1,0)和(5,0)C(0,1)和(0,5)D(0,1)和(0,5)4、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关5、一元二次方程x2-3x+10的根的情况是()A没有实数根B有两个相等的实数根C只有一个实数根D有两个不相等

3、的实数根二、多选题(5小题,每小题4分,共计20分)1、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x28x1+m0的两根,则m的值为()A15B16C17D182、下面一元二次方程的解法中,不正确的是()A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=C(x+2)2+4x=0,x1=2,x2=-2Dx2=x两边同除以x,得x=13、如图,为的直径延长线上的一点,与相切,切点为,是上一点,连接已知,则下列结论正确的为() 线 封 密 内 号学级年名姓 线 封 密 外

4、 A与相切B四边形是菱形CD4、如图,AB是O的直径,CD是O的切线,切点为D,CD与AB的延长线交于点C,A=30,则下列结论中正确的是()AAD=CDBBD=BCCAB=2BCDABD=605、如图,在的网格中,点,均在网格的格点上,下面结论正确的有()A点是的外心B点是的外心C点是的外心D点是的外心第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,直线yx+6与x轴、y轴分别交于A、B两点,点P是以C(1,0)为圆心,1为半径的圆上一点,连接PA,PB,则PAB面积的最大值为_2、如图,在平面直角坐标系中,等腰直角三角形OAB,A90,点O为坐标原点,点B在x

5、轴上,点A的坐标是(1,1)若将OAB绕点O顺时针方向依次旋转45后得到OA1B1,OA2B2,OA3B3,可得A1(,0),A2(1,1),A3(0,),则A2021的坐标是_3、如图,I是ABC的内心,B60,则AIC_4、圆锥形冰淇淋的母线长是12cm,侧面积是60cm2,则底面圆的半径长等于_5、如图,在中,则图中阴影部分的面积是_(结果保留) 线 封 密 内 号学级年名姓 线 封 密 外 四、解答题(5小题,每小题8分,共计40分)1、如图,矩形ABCD中,AB=6cm,BC=12cm. 点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速

6、度向点C移动. 若M, N分别从A, B点同时出发,设移动时间为t (0t6),DMN的面积为S. (1) 求S关于t的函数关系式,并求出S的最小值;(2) 当DMN为直角三角形时,求DMN的面积.2、在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.当时,请直接写出“W区域”内的整点个数;当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.3、已知P为O上一点,过点P作不过圆心的弦PQ,

7、在劣弧PQ和优弧PQ上分别有点A、B(不与P、Q重合),连接AP、BP,若APQ=BPQ(1)如图1,当APQ=45,AP=1,BP=2时,求O的半径。(2)如图2,连接AB,交PQ于点M,点N在线段PM上(不与P、M重合),连接ON、OP,设NOP=,OPN=,若AB平行于ON,探究与的数量关系。4、如图,在RtABC中,C90,BD平分ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E(1)求证:AC是O的切线;(2)若OB2,CD,求图中阴影部分的面积(结果保留)5、如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C(1)用

8、配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标; 线 封 密 内 号学级年名姓 线 封 密 外 (3)以AB为直径作N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是N的切线-参考答案-一、单选题1、C【解析】【分析】根据根与系数的关系列出关于另一根t的方程,解方程即可【详解】解:设关于x的方程的另一个根为xt,1t3,解得,t2故选:C【考点】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2bxc0(a0)的两根时,x1x2,x1x22、C【解析】【分析】由切线长定理判断,结合等腰

9、三角形的性质判断,利用切线的性质与直角三角形的斜边上的中线等于斜边的一半,判断,利用反证法判断【详解】如图, 是的两条切线, 故正确, 故正确, 是的两条切线, 取的中点,连接,则 所以:以为圆心,为半径作圆,则共圆,故正确, M是外接圆的圆心, 与题干提供的条件不符,故错误,综上:正确的说法是个,故选C 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题考查的是切线长定理,三角形的外接圆,四边形的外接圆,掌握以上知识是解题的关键3、A【解析】【分析】首先根据图像得出抛物线的对称轴和其中一个交点坐标,然后根据二次函数的对称性即可求得另一个交点坐标【详解】解:由图像可得,抛物线的对称轴为

10、,与x轴的一个交点坐标为(5,0),抛物线与x轴的两个交点关于对称轴对称,抛物线与x轴的另一个交点坐标为(1,0),故选:A【考点】此题考查了二次函数与x轴的交点,二次函数的对称性,解题的关键是根据二次函数的对称性求出与x轴的另一个交点坐标4、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或

11、或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键5、D【解析】【分析】根据一元二次方程判别式的性质分析,即可得到答案【详解】 x2-3x+10有两个不相等的实数根故选:D【考点】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程判别式的性质,从而完成求解二、多选题1、BC【解析】【分析】分3为底边长或腰长两种情况考虑:当3为底时,由a=b及a+b=8即可求出a、b的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系即可求得的值;当3为腰

12、时,则a、b中有一个为3,a+b=8即可求出b,再利用根与系数的关系即可求得的值【详解】解:当3为腰时,此时a3或b3,把x3代入方程x28x1+m0得9241+m0,解得m16,此时方程为x28x+150,解得x13,x25;当3为底时,此时ab,824(1+m)0,解得m17,此时方程为x28x+160,解得x1x24;综上所述,m的值为16或17故答案为:BC【考点】本题考查了一元二次方程根与系数的关系,等腰三角形的定义,分3为底边长或腰长两种情况讨论是解题的关键2、ACD【解析】【分析】各方程求出解,即可作出判断【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=

13、-5,=64+20=84,故选项A符合题意;B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD【考点】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键3、ABCD【解析】【分析】A、利用切线的性质得出PCO90,进而得出PCOPDO(SSS),即可得出PCOPDO90,得出答案即可;B、利用A项所求得出:CPBBPD,进而求出CPBDPB(SAS),即可得出答

14、案;C、利用全等三角形的判定得出PCOBCA(ASA),进而得出答案; 线 封 密 内 号学级年名姓 线 封 密 外 D、利用四边形PCBD是菱形,CPO30,则DPDB,则DPBDBP30,求出即可【详解】A、连接CO,DO,PC与O相切,切点为C,PCO90,在PCO和PDO中, ,PCOPDO(SSS),PCOPDO90,PD与O相切,故A正确;B、由A项得:CPBBPD,在CPB和DPB中,CPBDPB(SAS),BCBD,PCPDBCBD,四边形PCBD是菱形,故B正确;C、连接AC,PCCB,CPBCBP,AB是O直径,ACB90,在PCO和BCA中, ,PCOBCA(ASA),P

15、OAB,故C正确;D、四边形PCBD是菱形,CPO30,DPDB,则DPBDBP30,PDB120,故D正确;故选:ABCD【考点】此题主要考查了切线的判定与性质和全等三角形的判定与性质以及菱形的判定与性质等知识,熟练利用全等三角形的判定与性质是解题关键4、ABCD 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】连接OD,CD是O的切线,可得CDOD,由A=30,可以得出ABD=60,ODB是等边三角形,C=BDC=30,再结合在直角三角形中300所对的直角边等于斜边的一半,继而得到结论【详解】解:如图,连接OD,CD是O的切线,CDOD,ODC=90,又A=30,ABD=60

16、,故选项D成立;OBD是等边三角形,DOB=ABD=60,AB=2OB=2OD=2BDC=BDC=30,BD=BC,故选项B成立;AB=2BC,故选项C成立;A=C,DA=DC,故选项A成立;综上所述,故选项ABCD均成立,故选:ABCD【考点】本题考查了圆的有关性质的综合应用,在本题中借用切线的性质,求得相应角的度数是解题的关键5、ABCD【解析】【分析】连接HB、HD,利用勾股定理可得,则根据三角形外心的定义可对四个选项进行判断【详解】解:如图,连接HB、HD,根据勾股定理可得:,点是的外心,点是的外心,点是的外心,点是的外心,ABCD都是正确的故选:ABCD【考点】本题考查了三角形的外心

17、和勾股定理的应用,熟练掌握三角形的外心到三角形的三个顶点的距离相等是解决本题的关键三、填空题1、32 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】如图,作CHAB于H交O于E、F,求出A、B的坐标,根据勾股定理求出AB,再由SABCABCHOBAC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出即可【详解】如图,作CHAB于H交O于E、F,直线yx+6与x轴、y轴分别交于A、B两点,当y=0时,可得0=x+6,解得:x=8,A(8,0),当x=0时,得y=6,B(0,6),OA8,OB6,10,C(1,0),AC=8+1=9,SABCABCHOBA

18、C,CH=5.4,FHCH+CF=5.4+16.4,即C上到AB的最大距离为6.4,PAB面积的最大值106.432,故答案为32【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求高、求圆心到直线的距离等知识,解此题的关键是求出圆上的点到直线AB的最大距离2、【解析】【分析】根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环,再由 ,即可求解【详解】解:根据题意得:A1(,0),A2(1,1),A3(0,), ,由此发现,旋转8次一个循环, ,A2021的坐标是 故答案为: 线 封 密 内 号学级年名姓 线 封 密 外 【考点】本题主要考查了图形的旋

19、转,明确题意,准确得到规律是解题的关键3、120【解析】【分析】根据三角形的内切圆的圆心是三角形三个角的平分线的交点即可求解【详解】B=60,BAC+BCA=120三角形的内切圆的圆心是三角形三个角的平分线的交点,IAC=BAC,ICA=BCA,IAC+ICA=(BAC+BCA)=60AIC=18060=120故答案为120【考点】此题主要考查利用三角形的内切圆的圆心是三角形三个角的平分线的交点性质进行角度求解,熟练掌握,即可解题.4、5cm.【解析】【分析】设圆锥的底面圆的半径长为rcm,根据圆锥的侧面积公式计算即可.【详解】解:设圆锥的底面圆的半径长为rcm则2r1260,解得:r5(cm

20、),故答案为5cm【考点】圆锥的侧面积公式是本题的考点,牢记其公式是解题的关键.5、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB可得出结论【详解】解:,S阴影=S扇形AOB,故答案为:【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键四、解答题 线 封 密 内 号学级年名姓 线 封 密 外 1、(1)27(2) 【解析】【分析】(1)根据t秒时,M、N两点的运动路程,分别表示出AM、BM、BN、CN的长度,由SDMN=S矩形ABCDSADMSBMNSCDN进行列式即可得到S关于t的函数关系式,通过配方即可求得最小值;(2)当DMN

21、为直角三角形时,由MDN90,分NMD或MND为90两种情况进行求解即可得.【详解】(1) 由题意,得AM=tcm,BN=2tcm,则BM=(6t)cm,CN=(122t)cm,SDMN=S矩形ABCDSADMSBMNSCDN,S=12612t(6t)2t6(122t)=t26t+36=(t3)2+27,t=3在范围0t6内,S的最小值为27cm2;(2) 当DMN为直角三角形时,MDN90,可能NMD或MND为90,当NMD=90时,DN2=DM2+MN2,(122t)2+62=122+t2+(6t)2+(2t)2,解得t=0或18,不在范围0t6内,不可能;当MND=90时,DM2=DN2

22、+MN2,122+t2=(122t)2+62+(6t)2+(2t)2,解得t=或6,(6不在范围0t6内舍),S=(3)2+27=cm2.【考点】本题考查了二次函数的应用,涉及矩形的性质、三角形面积、二次函数的性质、勾股定理的应用等知识,熟练掌握和灵活应用相关知识是解题的关键.2、(1)顶点P的坐标为;(2) 6个; ,【解析】【分析】(1)由抛物线解析式直接可求;(2)由已知可知A(0,2),C(2+ ,-2),画出函数图象,观察图象可得;分两种情况求:当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a= ,则a1;当a0时,抛物线定点经过(2,2)时,a=-1

23、,抛物线定点经过(2,1)时,a=-,则-1a-【详解】解:(1)y=ax2-4ax+2a=a(x-2)2-2a, 顶点为(2,-2a);(2)如图,a=2,y=2x2-8x+2,y=-2,A(0,2),C(2+,-2),有6个整数点; 线 封 密 内 号学级年名姓 线 封 密 外 当a0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,; 当时,抛物线顶点经过点(2,2)时,;抛物线顶点经过点(2,1)时,; 综上所述:,【考点】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质是解题的关键3、(1);(2)+2=90,见解析【解析】【分析】(1)连接AB,由已

24、知得到APB=APQ+BPQ=90,根据圆周角定理证得AB是O的直径,然后根据勾股定理求得直径,即可求得半径;(2)连接OA、OB、OQ,由证得APQ=BPQ,即可证得OQON,然后根据三角形内角和定理证得2OPN+PON+NOQ=180,即可证得+2=90【详解】(1)连接AB,APQ=BPQ=45,APB=APQ+BPQ=90,AB是O的直径,AB=,O的半径为;(2)+2=90,证明:连接OA、OB、OQ,APQ=BPQ, ,AOQ=BOQ,OA=OB,OQAB, 线 封 密 内 号学级年名姓 线 封 密 外 ONAB,NOOQ,NOQ=90,OP=OQ,OPN=OQP,OPN+OQP+

25、PON+NOQ=180,2OPN+PON+NOQ=180,NOP+2OPN=90,NOP=,OPN=,+2=90【解答】解:【点评】本题考查了圆周角定理,垂径定理,熟练掌握性质定理是解题的关键4、(1)见解析;(2)【解析】【分析】(1)欲证明AC是O的切线,只要证明ODAC即可(2)证明OBE是等边三角形即可解决问题【详解】(1)证明:连接OD,如图,BD为ABC平分线,12,OBOD,13,23,ODBC,C90,ODA90,ODAC,AC是O的切线(2)过O作OGBC,连接OE,则四边形ODCG为矩形,GCODOB2,OGCD,在RtOBG中,利用勾股定理得:BG1,BE2,则OBE是等

26、边三角形,阴影部分面积为2【考点】本题考查切线的判定和性质,等边三角形的判定和性质,思想的面积公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型 线 封 密 内 号学级年名姓 线 封 密 外 5、(1),M(,);(2),(,);(3)证明见试题解析【解析】【详解】试题分析:(1)利用配方法把一般式转化为顶点式,然后根据二次函数的性质求出抛物线的顶点坐标;(2)连接BC,则BC与对称轴的交点为R,此时CR+AR的值最小;先求出点A、B、C的坐标,再利用待定系数法求出直线BC的解析式,进而求出其最小值和点R的坐标;(3)设点P坐标为(x,)根据NPAB=,列出方程,解方程得到点P坐标,再

27、计算得出,由勾股定理的逆定理得出MPN=90,然后利用切线的判定定理即可证明直线MP是N的切线试题解析:(1)=,抛物线的解析式化为顶点式为:,顶点M的坐标是(,);(2),当y=0时,解得x=1或6,A(1,0),B(6,0),x=0时,y=3,C(0,3)连接BC,则BC与对称轴x=的交点为R,连接AR,则CR+AR=CR+BR=BC,根据两点之间线段最短可知此时CR+AR的值最小,最小值为BC=设直线BC的解析式为,B(6,0),C(0,3),解得:,直线BC的解析式为:,令x=,得y=,R点坐标为(,);(3)设点P坐标为(x,)A(1,0),B(6,0),N(,0),以AB为直径的N的半径为AB=,NP=,即,移项得,得:,整理得:,解得(与A重合,舍去),(在对称轴的右侧,舍去),(与B重合,舍去),点P坐标为(2,2)M(,),N(,0),=,=, =,MPN=90,点P在N上,直线MP是N的切线考点:1二次函数综合题;2最值问题;3切线的判定;4压轴题

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1