1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期末专题测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、在同一坐标系中,二次函数与一次函数的图像可能是()ABCD2、若点
2、P(2,)与点Q(,)关于原点对称,则mn的值分别为()ABC1D53、如图,O是RtABC的外接圆,ACB90,过点C作O的切线,交AB的延长线于点D设A,D,则()AB+90C2+90D+2904、关于的一元二次方程的两根应为()AB,CD5、把方程x2+2x5(x2)化成ax2+bx+c0的形式,则a,b,c的值分别为()A1,3,2B1,7,10C1,5,12D1,3,10二、多选题(5小题,每小题4分,共计20分)1、下列图形中,是中心对称图形的是()ABCD2、已知,的半径为5,某条经过点的弦的长度为整数,则该弦的长度可能为()A4B6C8D103、已知直角三角形的两条边长恰好是方
3、程的两个根,则此直角三角形斜边长是 线 封 密 内 号学级年名姓 线 封 密 外 ()ABC3D54、下面一元二次方程的解法中,不正确的是()A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1=,x2=C(x+2)2+4x=0,x1=2,x2=-2Dx2=x两边同除以x,得x=15、下列语句中不正确的有()A等弧对等弦B等弦对等弧C相等的圆心角所对的弧相等D长度相等的两条弧是等弧第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,在中,的半径为点是边上的动点,过点作的一条
4、切线(其中点为切点),则线段长度的最小值为_2、将抛物线沿直线方向移动个单位长度,若移动后抛物线的顶点在第一象限,则移动后抛物线的解析式是_3、已知二次函数,当分别取时,函数值相等,则当取时,函数值为_4、五张背面完全相同的卡片上分别写有、31、0.101001001(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是_5、如图,是的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是_度四、解答题(5小题,每小题8分,共计40分)1、已知关于x的一元二次方程有两个实数根(1)求k的取值范围;(2)若,求k的值2、小敏与小霞两位同学解方程的
5、过程如下框:小敏:两边同除以,得,则小霞:移项,得,提取公因式,得则或,解得,你认为他们的解法是否正确?若正确请在框内打“”;若错误请在框内打“”,并写出你的解答 线 封 密 内 号学级年名姓 线 封 密 外 过程3、用指定方法解下列方程:(1)2x2-5x+10(公式法);(2)x2-8x+10(配方法)4、小明和小丽先后从A地出发同一直道去B地, 设小丽出发第时, 小丽、小明离B地的距离分别为、,与x之间的数表达式,与x之间的函数表达式是(1)小丽出发时,小明离A地的距离为 (2)小丽发至小明到达B地这段时间内,两人何时相距最近?最近距离是多少?5、如图,抛物线ya(x2)2+3(a为常数
6、且a0)与y轴交于点A(0,)(1)求该抛物线的解析式;(2)若直线ykx(k0)与抛物线有两个交点,交点的横坐标分别为x1,x2,当x12+x2210时,求k的值;(3)当4xm时,y有最大值,求m的值-参考答案-一、单选题1、C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y左侧,a,b同号,对称轴在y轴右侧a,b异号,以及当a大于0时开口向上,当a小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,
7、交y轴于正半轴,常数项为负,交y轴于负半轴如此分析下来,二次函数与一次函数无矛盾者为正确答案【详解】解:由方程组得ax2a,a0x21,该方程无实数根,故二次函数与一次函数图象无交点,排除BA:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;但是一次函数b为一次项系数,图象显示从左向右上升,b0,两者矛盾,故A错;C:二次函数开口向上,说明a0,对称轴在y轴右侧,则b0;b为一次函数的一次项系数,图象显示从左向右下降,b0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错故选C【考点】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的
8、正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上 线 封 密 内 号学级年名姓 线 封 密 外 2、B【解析】【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数解答【详解】解:P(2,-n)与点Q(-m,-3)关于原点对称,2=-(-m),-n=-(-3),m=2,n=-3, 故选:B【考点】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律3、C【解析】【分析】连接OC, 由BOC是AOC的外角,可得BOC2A2,由CD是O的切线,可求OCD90,可得D902即可【详解】连接OC,如图,O是RtABC的外接圆,ACB9
9、0,AB是直径,A,OA=OC,BOC是AOC的外角,A=ACO,BOC=A+ACO2A2,CD是O的切线,OCCD,OCD90,D90BOC902,2+90故选:C【考点】本题考查圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质,掌握圆的半径相等,三角形外角性质,切线性质,直角三角形两锐角互余性质4、B【解析】【分析】先把方程化为一般式,再计算判别式的值,然后利用求根公式解方程即可【详解】x23ax+a2=0,=(3a)24a2=a2,x=. 线 封 密 内 号学级年名姓 线 封 密 外 所以x1=a,x2=a.故答案选B.【考点】本题考查了解一元二次方程,解题的关键是根据公
10、式法解一元二次方程.5、D【解析】【分析】先把x2+2x5(x2)化简,然后根据一元二次方程的一般形式即可得到a、b、c的值【详解】解:x2+2x5(x2),x2+2x5x10,x2+2x5x+100,x23x+100,则a1,b3,c10,故选:D【考点】此题主要考查了一元二次方程化为一般形式,熟练掌握一元二次方程的一般形式是解题的关键二、多选题1、BD【解析】【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,进而判断得出答案【详解】解:A此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不符合题意;B此图形旋转180后能与原图形重合,此图形是
11、中心对称图形,故此选项符合题意;C此图形旋转180后不能与原图形重合,此图形不是中心对称图形,故此选项不合题意;D此图形旋转180后能与原图形重合,此图形是中心对称图形,故此选项符合题意故选:BD【考点】本题考查的是中心对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形2、CD【解析】【分析】过P作弦ABOP,连接OA,根据垂径定理求出AP=BP,根据勾股定理求出AP,再求出AB,再得出答案即可【详解】解:过P作弦ABOP,连接OA,如图, 线 封 密 内 号学级年名姓 线 封 密 外 OA=5,OP=3,OPAB,OP过圆心O,
12、AP=BP=4,即AB=4+4=8,过P点长度为整数的弦有4条,过P点最短的弦的长度是8,过P点最长的弦的长度是10,还有两条弦,长度是9,故答案为:CD【考点】本题考查了勾股定理和垂径定理,能熟记垂径定理是解此题的关键3、AC【解析】【分析】先解出一元二次方程,再根据勾股定理计算即可;【详解】,或,当2、3是直角边时,斜边;,3可以是三角形斜边;故选AC【考点】本题主要考查了一元二次方程的求解、勾股定理,准确计算是解题的关键4、ACD【解析】【分析】各方程求出解,即可作出判断【详解】解:A、方程整理得:x2-8x-5=0,这里a=1,b=-8,c=-5,=64+20=84,故选项A符合题意;
13、B、提取公因式得:(2-5x)(1+2-5x)=0,解得:x1=,x2=,故选项B不符合题意;C、方程整理得:x2+8x+4=0,解得:,故选项C符合题意;D、方程整理得:x2-x=0,即x(x-1)=0,解得:x1=0,x2=1,故选项D符合题意,故选:ACD 线 封 密 内 号学级年名姓 线 封 密 外 【考点】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键5、BCD【解析】【分析】在同圆或是等圆中,相等的圆心角所对的弧相等,所对的弦相等;在同圆或等圆中,能够互相重合的两条弧是等弧,据此判断就可以得到正确答案【详解】解:A、等弧对等弦,正确;B、缺少前提在同圆或
14、等圆中,故选项错误;C、缺少前提在同圆或等圆中,故选项错误;D、缺少前提在同圆或等圆中,故选项错误;故选:BCD【考点】本题考查等弧的概念和圆心角、弦、弧之间的关系,根据相关知识点解题是关键三、填空题1、【解析】【分析】如图:连接OP、OQ,根据,可得当OPAB时,PQ最短;在中运用含30的直角三角形的性质和勾股定理求得AB、AQ的长,然后再运用等面积法求得OP的长,最后运用勾股定理解答即可【详解】解:如图:连接OP、OQ,是的一条切线PQOQ当OPAB时,如图OP,PQ最短在RtABC中,AB=2OB=,AO=cosAAB= SAOB= ,即OP=3在RtOPQ中,OP=3,OQ=1PQ=故
15、答案为【考点】本题考查了切线的性质、含30直角三角形的性质、勾股定理等知识点,此正确作出辅助线、根据勾股定理确定当POAB时、线段PQ最短是解答本题的关键2、 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),再求出平移后的顶点坐标,最后求出平移后的函数关系式【详解】设抛物线沿直线方向移动个单位长度后顶点坐标为(t,3t),解得:t=1或t=-1(舍去),平移后的顶点坐标为(1,3),移动后抛物线的解析式是故答案为:【考点】本题考查二次函数的图象变换及一次函数的图像,解题的关键是正确理解图象变换的条件,本题属于基础题型3、2
16、020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值【详解】解:二次函数y=2x2+2020,当x分别取x1,x2(x1x2)时,函数值相等,2x12+2020=2x22+2020,x1=-x2,2x1+2x2=2(x1+x2)=0,当x=2x1+2x2时,y=20+2020=0+2020=2020,故答案为:2020【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答4、#0.4【解析
17、】【分析】根据题意可知有理数有31、,共2个,根据概率公式即可求解【详解】解:在、31、0.101001001(相邻两个1间依次多1个0)五个实数中,31、是有理数,任意取一张,抽到有理数的概率是故答案为:【考点】本题考查了实数的分类,根据概率公式求概率,理解题意是解题的关键5、120 线 封 密 内 号学级年名姓 线 封 密 外 【解析】【分析】本题可通过构造辅助线,利用垂径定理证明角等,继而利用SAS定理证明三角形全等,最后根据角的互换结合同弧所对的圆周角等于圆心角的一半求解本题【详解】连接OA,OB,作OHAC,OMAB,如下图所示:因为等边三角形ABC,OHAC,OMAB,由垂径定理得
18、:AH=AM,又因为OA=OA,故OAHOAM(HL)OAH=OAM又OA=OB,AD=EB,OAB=OBA=OAD,ODAOEB(SAS),DOA=EOB,DOE=DOA+AOE=AOE+EOB=AOB又C=60以及同弧,AOB=DOE=120故本题答案为:120【考点】本题考查圆与等边三角形的综合,本题目需要根据等角的互换将所求问题进行转化,构造辅助线是本题难点,全等以及垂径定理的应用在圆综合题目极为常见,圆心角、弧、圆周角的关系需熟练掌握四、解答题1、 (1) ;(2) 【解析】【分析】(1)根据建立不等式即可求解;(2)先提取公因式对等式变形为,再结合韦达定理求解即可【详解】解:(1)
19、由题意可知,整理得:,解得:,的取值范围是:故答案为:(2)由题意得:, 线 封 密 内 号学级年名姓 线 封 密 外 由韦达定理可知:,故有:,整理得:,解得:,又由(1)中可知,的值为故答案为:【考点】本题考查了一元二次方程判别式、根与系数的关系、韦达定理、一元二次方程的解法等知识点,当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的实数根;当0时,方程没有实数根2、两位同学的解法都错误,正确过程见解析【解析】【分析】根据因式分解法解一元二次方程【详解】解:小敏:两边同除以,得,则()小霞:移项,得,提取公因式,得则或,解得,()正确解答:移项,得,提取公因式,得,去括号,得,则
20、或,解得,【考点】本题考查因式分解法解一元二次方程,掌握因式分解的技巧准确计算是解题关键3、 (1)x1,x2(2)x14+,x24-【解析】【分析】(1)根据公式法,可得方程的解;(2)根据配方法,可得方程的解(1)解:a2,b-5,c1, 线 封 密 内 号学级年名姓 线 封 密 外 b24ac(-5)2-42117,x,x1,x2(2)解:移项得,并配方,得,即(x-4)215,两边开平方,得x4,x14+,x24-【考点】本题考查了解一元二次方程,配方法解一元二次方程的关键是配方,利用公式法解方程要利用根的判别式4、(1)250;(2)当小丽出发第时,两人相距最近,最近距离是【解析】【
21、分析】(1)由x=0时,根据-求得结果即可;(2)求出两人相距的函数表达式,求出最小值即可【详解】解(1)当x=0时,=2250,=2000-=2250-2000=250(m)故答案为:250(2)设小丽出发第时,两人相距,则即其中因此,当时S有最小值,也就是说,当小丽出发第时,两人相距最近,最近距离是【考点】此题主要考查了二次函数的性质的应用,熟练掌握二次函数的性质是解答本题的关键5、(1);(2);(3)【解析】【分析】(1)把代入抛物线的解析式,解方程求解即可; (2)联立两个函数的解析式,消去 得:再利用根与系数的关系与可得关于的方程,解方程可得答案;(3)先求解抛物线的对称轴方程,分
22、三种情况讨论,当 结合函数图象,利用函数的最大值列方程,再解方程即可得到答案.【详解】解:(1)把代入中, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线的解析式为: (2)联立一次函数与抛物线的解析式得: 整理得: x1+x2=4-3k,x1x2=-3,x12+x22=(4-3k)2+6=10,解得: (3)函数的对称轴为直线x=2,当m2时,当x=m时,y有最大值,=-(m-2)2+3,解得m=,m=-,当m2时,当x=2时,y有最大值,=3,m=,综上所述,m的值为-或【考点】本题考查的是利用待定系数法求解抛物线的解析式,抛物线与轴的交点坐标,一元二次方程根与系数的关系,二次函数的增减性,掌握数形结合的方法与分类讨论是解题的关键.