收藏 分享(赏)

2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx

上传人:a**** 文档编号:640631 上传时间:2025-12-12 格式:DOCX 页数:24 大小:564.29KB
下载 相关 举报
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第1页
第1页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第2页
第2页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第3页
第3页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第4页
第4页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第5页
第5页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第6页
第6页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第7页
第7页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第8页
第8页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第9页
第9页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第10页
第10页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第11页
第11页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第12页
第12页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第13页
第13页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第14页
第14页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第15页
第15页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第16页
第16页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第17页
第17页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第18页
第18页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第19页
第19页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第20页
第20页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第21页
第21页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第22页
第22页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第23页
第23页 / 共24页
2022-2023学年度人教版九年级数学上册期中定向测试试题 卷(Ⅰ)(解析版).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、 线 封 密 内 号学级年名姓 线 封 密 外 人教版九年级数学上册期中定向测试试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨

2、径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()ABCD2、一次函数与二次函数在同一坐标系中的图象大致为( )ABCD3、二次函数y=x2+px+q,当0x1时,此函数最大值与最小值的差()A与p、q的值都有关B与p无关,但与q有关C与p、q的值都无关D与p有关,但与q无关4、如图,一次函数y=-3x+4的

3、图象交x轴于点A,交y轴于点B,点P在线段AB上(不与点A,B重合),过点P分别作OA和OB的垂线,垂足为C,D若矩形OCPD的面积为1时,则点P的坐标为()A(,3)B(,2)C(,2)和(1,1)D(,3)和(1,1)5、已知抛物线P:,将抛物线P绕原点旋转180得到抛物线,当时,在抛物线上任取一点M,设点M的纵坐标为t,若,则a的取值范围是()ABCD二、多选题(5小题,每小题4分,共计20分) 线 封 密 内 号学级年名姓 线 封 密 外 1、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a0)的图象与x轴的交点的横坐标分别为1、3,则下列结论中正确的有()Aabc0B2a+

4、b=0C3a+2c0D对于任意x均有ax2a+bxb02、下列图案中,是中心对称图形的是()ABCD3、对于二次函数,下列说法不正确的是()A图像开口向下B图像的对称轴是直线C函数最大值为0D随的增大而增大4、下面的图形中,绕着一个点旋转120后,能与原来的位置重合的是()ABCD5、以图(以点O为圆心,半径为1的半圆)作为“基本图形”,分别经历如下变换能得到图的有()A只要向右平移1个单位B先以直线为对称轴进行翻折,再向右平移1个单位C先绕着点O旋转,再向右平移1个单位D绕着的中点旋转即可第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、某商场销售一批名牌衬衫,平均每天

5、可售出20件,每件盈利40元,由于疫情,为了扩大销售量,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件若商场平均每天销售这种衬衫的盈利要达到1200元,则每件衬衫应降价多少元?设每件衬衫降价x元,由题意列得方程_2、我们用符号表示不大于的最大整数例如:,那么:(1)当时,的取值范围是_;(2)当时,函数的图象始终在函数的图象下方则实数的范围是_3、已知抛物线与x轴的一个交点为,则代数式的值为_ 线 封 密 内 号学级年名姓 线 封 密 外 4、如图是二次函数 和一次函数y2kx+t的图象,当y1y2时,x的取值范围是_5、设分别为一元二次

6、方程的两个实数根,则_四、解答题(5小题,每小题8分,共计40分)1、已知关于的方程有实根(1)求的取值范围;(2)设方程的两个根分别是,且,试求的值2、解关于y的方程:by21y2+23、判断2、5、-4是不是一元二次方程的根4、在数学活动课上,王老师要求学生将图1所示的33正方形方格纸,剪掉其中两个方格,使之成为轴对称图形规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为要剪掉部分)请在图中画出4种不同的设计方案,将每种方案中要剪掉的两个方格涂黑(每个33的正方形方格画一种,例图除外)5、在平面直角坐标系中,抛物线交x轴于点,过点B的直线交抛物线于点

7、C(1)求该抛物线的函数表达式;(2) 若点P是直线BC下方抛物线上的一个动点(P不与点B,C重合),求面积的最大值;(3)若点M在抛物线上,将线段OM绕点O旋转90,得到线段ON,是否存在点M,使点N恰好落在直线BC上?若存在,请直接写出点M的坐标;若不存在,请说明理由-参考答案-一、单选题1、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系, 线 封 密 内 号学级年名姓 线 封

8、 密 外 设抛物线解析式为y=ax2,点B(45,-78),-78=452a,解得:a=,此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.2、A【解析】【分析】由二次函数的解析式可知,二次函数图象经过原点,则只有选项A,D可能正确,B,C不符合舍去,然后对A,D选项,根据二次函数的图象确定a和b的符号,然后根据一次函数的性质看一次函数图象的位置是否正确,若正确,说明它们可在同一坐标系内存在【详解】解:由二次函数的解析式可知,二次函数图象经过原点,则只有选项A,D符合,B,C不符合舍去,A、由二次函数y=ax2+bx的图象得a0,再根据0得

9、到b0,则一次函数y=ax+b经过第一、三、四象限,所以A选项正确;D、由二次函数y=ax2+bx的图象得a0,再根据0得到b0,则一次函数y=ax+b经过第二、三、四象限,所以D选项错误故选:A【考点】本题考查了二次函数的图象:二次函数的图象为抛物线,可能利用列表、描点、连线画二次函数的图象也考查了二次函数图象与系数的关系3、D【解析】【分析】分别求出函数解析式的最小值、当0x1时端点值即:当x=0和x=1时的函数值由二次函数性质可知此函数最大值与最小值必是其中的两个,通过比较可知差值与p有关,但与q无关【详解】解:依题意得:当时,端点值,当时,端点值,当时,函数最小值,由二次函数的最值性质

10、可知,当0x1时,此函数最大值和最小值是、其中的两个,所以最大值与最小值的差可能是或 或,故其差只含p不含q,故与p有关,但与q无关故选:【考点】本题考查了二次函数的最值问题,掌握二次函数的性质、灵活运用配方法是解题的关键4、D【解析】【分析】由点P在线段AB上可设点P的坐标为(m,-3m+4)(0m),进而可得出OC=m,OD=-3m+4,结合矩形OCPD的面积为1,即可得出关于m的一元二次方程,解之即可得出m的值,再将其代入点P的 线 封 密 内 号学级年名姓 线 封 密 外 坐标中即可求出结论【详解】解:点P在线段AB上(不与点A,B重合),且直线AB的解析式为y=-3x+4,设点P的坐

11、标为(m,-3m+4)(0m),OC=m,OD=-3m+4矩形OCPD的面积为1,m(-3m+4)=1,m1=,m2=1,点P的坐标为(,3)或(1,1)故选:D【考点】本题考查了一次函数图象上点的坐标特征以及解一元二次方程,利用一次函数图象上点的坐标特征及,找出关于m的一元二次方程是解题的关键5、A【解析】【分析】先求出抛物线的解析式,再列出不等式,求出其解集或,从而可得当x=1时,有成立,最后求出a的取值范围【详解】解:抛物线P:,将抛物线P绕原点旋转180得到抛物线,抛物线P与抛物线关于原点对称,设点(x,y)在抛物线P上,则点(-x,-y)一定在抛物线P上,抛物线的解析式为,当时,在抛

12、物线上任取一点M,设点M的纵坐标为t,若,即令,解得:或,设,开口向下,且与x轴的两个交点为(0,0),(4a,0),即当时,要恒成立,此时,当x=1时,即可,得:,解得:,又故选A【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点 线 封 密 内 号学级年名姓 线 封 密 外 坐标问题转化为解关于x的一元二次方程也考查了二次函数的性质二、多选题1、BD【解析】【分析】由抛物线开口方向得到a0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a0,利用抛物线与y轴的交点位置得到c0,则可对

13、A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+cax2+bx+c,于是可对D进行判断【详解】解:抛物线开口向上,a0,抛物线与x轴的交点的坐标分别为(-1,0),(3,0),抛物线的对称轴为直线x=1,即-=1,b=-2a0,抛物线与y轴的交点在x轴下方,c0,abc0,所以A错误;b=-2a,2a+b=0,所以B正确;x=-1时,y=0,a-b+c=0,即a+2a+c=0,c=-3a,3a+2c=3a-6a=-3a0,所以C错误;x=1时,y的值

14、最小,对于任意x,a+b+cax2+bx+c,即ax2-a+bx-b0,所以D正确故选:BD【点睛】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解2、ABD【解析】【分析】在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,这个图形就是中心对称图形,根据定义判断即可【详解】、是中心对称图形,选项正确;B、是中心对称图形,选项正确;C、不是中心对称图形,选项错误;D、是

15、中心对称图形,选项正确故选:ABD【点睛】本题考查中心对称图形的定义,牢记定义是解题关键 线 封 密 内 号学级年名姓 线 封 密 外 3、ACD【解析】【分析】根据题目中的函数解析式,可以判断各个选项中的说法是否正确【详解】解:二次函数,a20,该函数的图象开口向上,故选项A错误,图象的对称轴是直线x1,故选项B正确,函数的最小值是y0,故选项C错误,当x1时随的增大而增大,故选项D错误,故选:A,C,D【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答4、AB【解析】【分析】根据旋转的性质对题中图形进行分析即可【详解】解:A、旋转任意角度都与原

16、图形重合,故符合题意;B、旋转最小的度数是120度与原图形重合,故符合题意;C、旋转最小的度数是72度(72度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意;D、旋转最小的度数是90度(90度的整倍数都可以)与原图形重合,则旋转120度不能与原图形重合,故不符合题意故选AB【点睛】本题主要考查了图形的旋转,理解旋转的定义是解题的关键5、BCD【解析】【分析】观察两个半圆的位置关系,再确定能否通过图象变换得到,以及旋转、平移的方法【详解】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180,再向右平移1个单位,或绕着OB的中点

17、旋转180即可得到图(2)故选BCD【点睛】本题考查了旋转、轴对称、平移的性质关键是根据变换图形的位置关系,确定变换规律三、填空题1、【解析】【分析】设每件衬衫降价x元,根据每件衬衫每降价1元,商场平均每天可多售出2件可得销售量为,则每件衬衫的利润为,根据销售量乘以每件衬衫的利润等于1200元,列出一元二次方程即可【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:设每件衬衫降价x元,根据题意得,故答案为:【考点】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解题的关键2、 或【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数定义精确求解x

18、取值范围(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数【详解】(1)因为表示整数,故当时,的可能取值为0,1,2当取0时, ;当取1时, ;当=2时,故综上当时,x的取值范围为:(2)令,由题意可知:,当时,=,在该区间函数单调递增,故当时, ,得当时,=0, 不符合题意当时,=1, ,在该区间内函数单调递减,故当取值趋近于2时,得,当时,因为 ,故,符合题意故综上:或【考点】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常规题型转化为常

19、见题型3、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,m2-m=1,-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:2019【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值4、1x2【解析】【分析】根据图象可以直接回答,使得y1y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x

20、的取值范围【详解】根据图象可得出:当y1y2时,x的取值范围是:1x2故答案为:1x2【考点】本题考查了二次函数的性质本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度5、2020【解析】【分析】根据一元二次方程的解结合根与系数的关系即可得出m22m2022,mn2,将其代入m23mnm22m(mn)中即可求出结论【详解】解:m,n分别为一元二次方程x22x20220的两个实数根,m22m2022,mn2,m23mnm22m(mn)2022(2)2020故答案为:2020【考点】本题考查了根与系数的关系以及一元二次方程的解,根据一元二次方程的解结合根与系数的关系得出m22

21、m2022,mn2是解题的关键四、解答题1、(1);(2)不存在【解析】【分析】(1)根据根的判别式即可求出答案(2)根据根与系数的关系即可求出答案【详解】解:(1),;(2)由题意可知:x1+x2=2,x1x2=,k=, 线 封 密 内 号学级年名姓 线 封 密 外 k=不符合题意,舍去,k的值不存在【点睛】本题考查了一元二次方程根的判别式,解题的关键是熟练运用根与系数的关系以及根的判别式,本题属于基础题型2、当b1时,原方程的解为y;当b1时,原方程无实数解【解析】【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案【详解】解:移项得:by2y22+1,合并

22、同类项得:(b1)y23,当b1时,原方程无解;当b1时,原方程的解为y;当b1时,原方程无实数解【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论3、2,-4是一元二次方程的根,5不是一元二次方程的根.【解析】【分析】分别将2、5、-4代入方程进行验证即可.【详解】解:将x=2代入可得:6=6,故x=2是该一元二次方程的根,将x=5代入可得:303,故x=5不是该一元二次方程的根,将x=-4代入可得:12=12,故x=-4是该一元二次方程的根.【点睛】本题考查一元二次方程解的意义,方程的解即为能使方程左右两边相等的未知数的值.4、见解析.【解析】【分析】根据轴对称图形和旋转

23、对称图形的概念作图即可得【详解】解:根据剪掉其中两个方格,使之成为轴对称图形;即如图所示:【点睛】本题主要考查利用旋转设计图案,解题的关键是掌握轴对称图形和旋转对称图形的概念5、(1);(2);(3)存在,或 或或【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 (1)将A、B两点的坐标分别代入抛物线的解析式中,得关于a、b的二元一次方程组,解方程组即可求得a、b,从而可求得抛物线的函数解析式;(2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,则有,设,则可得E点坐标,从而可分别求得PE、DE,从而求得PE,解由二次函数与一次函数组成的方程组,可求得点C的坐

24、标,进而求得PBC的面积关于m的函数,求出函数的最值即可;(3)设点M的坐标为(p,q),分别求出直线OM、ON的解析式,再求得ON与直线的交点N的坐标,根据OM=ON,即可求出p与q的值,从而求得点M的坐标【详解】(1)将点,代入中,得:解得该抛物线表达式为 (2)过点P作轴,交x轴于点D,交BC于点E,作于点F,连接PB,PC,如图 设点,则点点P、E均位于直线的下方P、E两点的纵坐标均为负,点C的坐标为方程组的一个解解这个方程组,得,点B坐标为点C的横坐标为(其中)这个二次函数有最大值,且当时,的最大值为 线 封 密 内 号学级年名姓 线 封 密 外 (3)存在设M(p,q),其中,且p

25、0, 则直线OM的解析式为:由于ONOM,则直线ON的解析式为: 解方程组 ,得, 即点N的坐标为 ,且OM=ON 即 或把代入两式中并整理,得: 或 解方程得: , (舍去)当时,;当时,;当时,故点M的坐标分别为:或或当p=0时,则q=3,即M(0,3),而,且OMOB即此时点M也满足题意 综上所述,满足题意的点M的坐标为或或或【点睛】本题是二次函数的压轴题,也是中考常考题型,它考查了待定系数法求二次数解析式,二次函数的图象,求二次函数的最值,平面直角坐标系中图象旋转问题,解方程组,勾股定理等知识,运算量较大,这对学生的运算能力提出了更高的要求;求三角形面积时用到图形的割补方法,这是在平面直角坐标系中求图象面积常用的方法

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1