1、人教版七年级数学上册第四章几何图形初步综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示的是一个由5块大小相同的小正方体搭建成的几何体,则它的左视图是()ABCD2、如图,小林利用圆规在线段
2、上截取线段,使若点D恰好为的中点,则下列结论中错误的是()ABCD3、如图,河道的同侧有两个村庄,计划铺设一条管道将河水引至两地,下面的四个方案中,管道长度最短的是()ABCD4、下列说法中正确的个数为()射线OP和射线PO是同一条射线;连接两点的线段叫两点间的距离;两点确定一条直线;若AC=BC,则C是线段AB的中点A1个B2个C3个D4个5、已知,则的余角是()ABCD6、下列说法中,正确的是()已知,则的余角是50若,则和互为余角若,则、和互为补角一个角的补角必为钝角A,B,C,D,7、下面四个图形中,经过折叠能围成如图所示的几何图形的是()ABCD8、如图,已知线段上有三点,则图中共有
3、线段( )A7条B8条C9条D10条9、是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择()ABCD10、由5个棱长为1的小正方体组成的几何体如图放置,一面着地,两面靠墙如果要将露出来的部分涂色,则涂色部分的面积为()A9B11C14D18第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图所示的某种玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm, 为了美观,现要在其表面喷涂油漆,如果喷涂1dm2需用油漆5g,那么喷涂这个玩具共需油漆_g2、 “枪打一条线,棍打一大片”从字面上理解这句话所描述的现象,用数
4、学知识可解释为:_3、如图,点P在直线AB_;点Q在直线AB_,也在射线AB_,但在线段AB的_上4、如图所示,从O点出发的五条射线,可以组成_个小于平角的角5、将一个正方体木块涂成红色,然后如图把它的棱三等分,再沿等分线把正方体切开,可以得到27个小正方体,其中三面涂色的小正方体有8个,两面涂色的小正方体有12个,一面涂色的小正方体有6个,各面都没有涂色的小正方体有1个;现将这个正方体的棱n等分,如果得到各面都没有涂色的小正方体216个,那么n的值为_三、解答题(5小题,每小题10分,共计50分)1、观察下列多面体,并把下表补充完整.名称三棱柱四棱柱五棱柱六棱柱图形顶点数61012棱数912
5、面数58观察上表中的结果,你能发现、之间有什么关系吗?请写出关系式.2、如图一,已知数轴上,点表示的数为,点表示的数为,动点从出发,以个单位每秒的速度沿射线的方向向右运动,运动时间为秒(1)线段_(2)当点运动到的延长线时_(用含的代数式表示)(3)如图二,当秒时,点是的中点,点是的中点,求此时的长度(4)当点从出发时,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,点表示的数为:_(用含的代数式表示),点表示的数为:_(用含的代数式表示)存在这样的值,使、三点有一点恰好是以另外两点为端点的线段的中点,请直接写出值_3、已知O是直线上的一点,是直角,平分(1)如图a若,求的度数;若,
6、直接写出的度数(用含的式子表示)(2)将图a中的绕点O顺时针旋转至图b的位置,试探究和之间的数量关系,写出你的结论,并说明理由4、已知:如图所示,OC是内部一条射线,且OD平分,OE平分(1)若,则的度数是_(2)若,求的度数,并根据计算结果直接写出与之间的数量关系(写出计算过程)(3)如图所示,射线OC在的外部,且OD平分,OE平分试着探究与之间的数量关系(写出详细推理过程)5、在一条不完整的数轴上从左到右有点A,B,C,其中,如图所示设点A,B,C所对应数的和是p(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且,求
7、p-参考答案-一、单选题1、D【解析】【分析】找到从几何体的左边看所得到的图形即可【详解】解:左视图有2列,每列小正方形数目分别为2,1故选:D【考点】此题主要考查了简单几何体的三视图,关键是掌握所看的位置2、C【解析】【分析】根据线段中点的性质逐项判定即可【详解】解:由题意得:D是线段CE的中点,AB=CDCD=DE,即选项A正确;AB=CE=CD=DE,即B、D正确,C错误故答案为C【考点】本题考查了尺规作图和线段中点的性质,其中正确理解线段中点的性质是解答本题的关键3、A【解析】【分析】根据两点之间线段最短可判断方案A比方案C、D中的管道长度最短,根据垂线段最短可判断方案A比方案B中的管
8、道长度最短【详解】解:四个方案中,管道长度最短的是A故选:A【考点】本题考查了垂线段:从直线外一点引一条直线的垂线,这点和垂足之间的线段叫做垂线段4、A【解析】【分析】根据射线的定义及其表示可判断;根据两点间的距离定义可判断;根据直线基本事实可判断;根据线段中点定义可判断,然后可得出结论【详解】解:直线上一点和她一旁的部分,射线OP端点是O,从O向P无限延伸,射线PO端点是P,从P向O无限延伸,所以不是同一条射线,故错误;连接两点的线段的长度叫两点间的距离,故错误;经过两点有且只有一条直线,两点确定一条直线符合基本事实,故正确;把一条线段分成两条相等的线段的点,若AC=BC,点C可以在线段AB
9、上时,C是线段AB的中点,若AC=BC,点C在线段AB外时,点C不是线段AB的中点,故错误正确的个数是1故选择A【考点】本题考查点与线的基本概念,掌握射线,两点间距离,直线基本事实,线段中点是解题关键5、A【解析】【分析】根据余角的定义、角度的四则运算即可得【详解】和为的两个角互为余角,且,的余角为,故选:A【考点】本题考查了余角、角度的四则运算,熟练掌握余角的定义是解题关键6、A【解析】【分析】根据余角及补角的定义进行判断即可【详解】和为180度的两个角互为补角,和为90度的两个角互为余角,已知A=40,则A的余角=50,正确,若1+2=90,则1和2互为余角,正确,1、2和3三个角不能互为
10、补角,故错误,若一个角为120,则这个角的补角为60,不是钝角,故错误,正确的是:故选:A【考点】本题考查了余角及补角,掌握余角和补角的定义是解题的关键7、B【解析】【分析】根据图中三角形,圆,正方形所处的位置关系即可直接选出答案【详解】三角形图案的顶点应与圆形的图案相对,而选项A与此不符,所以错误;三角形图案所在的面应与正方形的图案所在的面相邻,而选项C与此也不符,三角形图案所在的面应与圆形的图案所在的面相邻,而选项D与此也不符,正确的是B故选B【考点】此题主要考查了展开图折叠成几何体,同学们可以动手折叠一下,有助于空间想象力的培养8、D【解析】略9、D【解析】【分析】观察图形可知,的小正方
11、体的个数分别为4,3,3,2,其中组合不能 构成长方体,组合符合题意【详解】解:观察图形可知,的小正方体的个数分别为4,3,3,2,其中组合不能构成长方体,组合符合题意故选D【考点】本题考查了立体图形,应用空间想象能力是解题的关键10、B【解析】【详解】分析:由涂色部分面积是从上、前、右三个方向所涂面积相加,据此可得详解:由图可知涂色部分是从上、前、右三个方向所涂面积相加,即涂色部分面积为4+4+3=11,故选B点睛:本题主要考查几何体的表面积,解题的关键是掌握涂色部分是从上、前、右三个方向所涂面积相加的结果二、填空题1、140【解析】【分析】根据题意先求出玩具的表面积,然后再求需要的油漆质量
12、【详解】解:玩具的表面积为:6(22)+4(11)=28平方分米,所以喷涂这个玩具共需油漆285=140克故答案为:140【点睛】本题主要考查了立体图形的视图问题解题的关键是能把从不同的方向上看到的图形面积抽象出来(即利用视图的原理),从而求得总面积2、点动成线,线动成面【解析】【分析】子弹可看作一个点,棍可看作一条线,由此可得出这个现象的本质【详解】解:“枪打一条线,棍打一大片”,用数学知识可解释为:点动成线,线动成面故答案为:点动成线,线动成面【点睛】本题考查了点、线、面的关系,难度不大,注意将生活中的实物抽象为数学上的模型3、 外 上 上 延长线【解析】【分析】根据点与直线,线段,射线的
13、位置关系作答即可【详解】解:由图可得:点P在直线AB外;点Q在直线AB上,也在射线AB上,但在线段AB的延长线上故答案为:外;上;上;延长线【点睛】本题主要考查了点与线的位置关系,认真辨别图形是解题的关键4、10【解析】【分析】由一条射线OA为边可以得到4个角,然后求4+3+2+1和即可【详解】解:由一条射线OA为边可以得到4个角,5条射线所成小于平角的角个数=4+3+2+1=10个故答案为:10【点睛】本题考查了如何求角的数量问题,按照顺序求出一射线为边最多的角,然后求从1到最大数所有数的和是解题关键5、8【解析】【分析】求出没有涂色的部分的棱长,进而求出原正方体的棱长,确定n的值即可【详解
14、】解:666=216,没有涂色的小正方体所组成的大正方体的棱长为6,n=6+1+1=8,故答案为:8【点睛】本题考查认识立体图形,理解没有涂色的小正方体的棱长与原正方体的棱长之间的关系是正确解答的关键三、解答题1、8,15,18,6,7;【解析】【详解】分析:结合三棱柱、四棱柱和五棱柱的特点,即可填表,根据已知的面、顶点和棱与n棱柱的关系,可知n棱柱一定有(n+2)个面,2n个顶点和3n条棱,进而得出答案,利用前面的规律得出a,b,c之间的关系详解:填表如下:名称三棱柱四棱柱五棱柱六棱柱图形顶点数a681012棱数b9121518面数c5678根据上表中的规律判断,若一个棱柱的底面多边形的边数
15、为n,则它有n个侧面,共有n+2个面,共有2n个顶点,共有3n条棱;故a,b,c之间的关系:a+c-b=2点睛:此题通过研究几个棱柱中顶点数、棱数、面数的关系探索出n棱柱中顶点数、棱数、面数之间的关系(即欧拉公式),掌握常见棱柱的特征,可以总结一般规律:n棱柱有(n+2)个面,2n个顶点和3n条棱是解题关键2、 (1)(2)(3)(4);秒或秒或秒【解析】【分析】(1)由数轴上两点间的距离的定义求解即可,数轴上两点间的距离等于数轴上两点所对应的数的差的绝对值;(2)结合“路程速度时间”以及两点间的距离公式,用点P运动路程可求解;(3)当秒时,根据路程速度时间,得到,所以,再 由点是的中点,点是
16、的中点,利用中点的定义得到,最后由即可得到结论(4)设运动时间为,当点从点出发时,以个单位每秒的速度沿射线的方向向右运动,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,结合“路程速度时间”,再利用数轴上两点间距离公式,则点所表示的数是点的运动路程加上点所表示的数,点所表示的数是点的运动路程加上点所表示的数即可结合的结论和点所表示的数,分三种情况讨论即可(1)解:在数轴上,点A表示的数为6,点B表示的数为8,故答案为:14(2)在数轴上,点表示的数为,点表示的数为,动点从点出发时,以个单位每秒的速度沿射线的方向向右运动,运动时间为秒,故答案为:(3)点表示的数为,点表示的数为,动点从
17、点出发时,以个单位每秒的速度沿射线的方向向右运动,当秒时,又点是的中点,点是的中点,此时的长度为(4)设运动时间为,当点从点出发时,以个单位每秒的速度沿射线的方向向右运动,另一个动点同时从点出发,以个单位每秒的速度沿射线向右运动,点所表示的数为:,点所表示的数为:,故答案为:;结合的结论和点所表示的数,可知:点表示的数为,点所表示的数为:,点所表示的数为:,分以下三种情况:若点为中点,则,解得:;若点为中点,则,解得:;若点为中点,则,解得:综上所述,当为秒或秒或秒时,、三点中有一点恰好是以另外两点为端点的线段的中点【考点】本题考查了数轴上的动点问题,数轴上两点之间的距离,一元一次方程的应用,
18、中点的定义,注意分情况讨论解题的关键是学会用含有t的式子表示动点点P和点Q表示的数3、(1)30;(2),见解析【解析】【分析】(1)首先求得COB的度数,然后根据角平分线的定义求得COE的度数,再根据DOE=COD-COE即可求解;解法与相同,把中的60改成即可;(2)把AOC的度数作为已知量,求得BOC的度数,然后根据角的平分线的定义求得COE的度数,再根据DOE=COD-COE求得DOE,即可解决【详解】解:(1),平分,又,同DOE=90-(180-)=90-90+=即:(2)理由如下:平分, 【考点】本题考查了角度的计算,正确理解角平分线的定义,理解角度之间的和差关系是关键4、(1)
19、65;(2)(或),见解析;(3)见解析【解析】【分析】(1)根据角平分线的性质计算即可;(2)根据角平分线的性质进行表示即可;(3)根据角平分线的性质分析判断即可;【详解】(1)OD平分,OE平分,又,;故答案是:(2)方法1:OE平分,OD平分,与之间的关系为:(或);方法2:OD平分,OE平分,与之间的关系为:(或);(3)OD平分,OE平分,【考点】本题主要考查了角平分线的综合应用,准确分析计算是解题的关键5、(1)-2,1,-1,-4;(2)-88【解析】【分析】(1)根据以为原点,则表示1,表示,进而得到的值;根据以为原点,则表示,表示,进而得到的值;(2)根据原点在图中数轴上点的右边,且,可得表示,表示,表示,据此可得的值【详解】解:(1)若以为原点,则点所对应的数为,点所对应的数为1,此时,若以为原点,则点所对应的数为,点所对应的数为,此时,;(2)原点在图中数轴上点的右边,且,则点所对应的数为,点所对应的数为,点所对应的数为,此时,【考点】本题主要考查了两点间的距离以及数轴的运用,解题时注意:连接两点间的线段的长度叫两点间的距离