1、人教版七年级数学上册第二章整式的加减综合练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小文在做多项式减法运算时,将减去误认为是加上,求得的答案是(其他运算无误),那么正确的结果是()ABCD2、已知
2、是关于,的单项式,且这个单项式的次数为5,则该单项式是()ABCD3、多项式与多项式相加后,不含二次项,则常数m的值是()A2BCD4、代数式的意义是( )A的平方与的和B与的平方的和C与两数的平方和D与的和的平方5、若多项式的值为2,则多项式的值是()A11B13C-7D-56、代数式3x2y-4x3y2-5xy3-1按x的升幂排列,正确的是()A-4x3y2+3x2y-5xy3-1B-5xy3+3x2y-4x3y2-1C-1+3x2y-4x3y2-5xy3D-1-5xy3+3x2y-4x3y27、()ABCD8、下列代数式中单项式共有()A2个B4个C6个D8个9、在0,1,x,3x,中,
3、是单项式的有()A1个B2个C3个D4个10、下列说法错误的是()A单项式h的系数是1B多项式a-2.5的次数是1Cm+2和3都是整式D是六次单项式第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、多项式是按照字母x的_排列的,多项式是按照字母_的_排列的2、已知2m3n=4,则代数式m(n4)n(m6)的值为_3、某种桔子的售价是每千克x元,用面值为100元的人民币购买了6千克,应找回_元4、围棋是一种起源于中国的棋类游戏,在春秋战国时期即有记载,围棋棋盘由横纵各19条等距线段构成,围棋的棋子分黑白两色,下在横纵线段的交叉点上若一个白子周围所有相邻(有线段连接)的位置都
4、有黑子,白子就被黑子围住了如图1,围住1个白子需要4个黑子,固住2个白子需要6个黑子,如图2,围住3个白子需要8个或7个黑子,像这样,不借助棋盘边界,只用15个黑子最多可以围住_个白子5、一个多项式M减去多项式,小马虎却误解为先加上这个多项式,结果,得,则正确的结果是_三、解答题(5小题,每小题10分,共计50分)1、将一根长为的铁丝,剪掉一部分后,剩下部分围成一个长方形(接头部分忽略不计)这个长方形的长为,宽为(1)求剪掉部分的铁丝长度;(2)若围成的长方形的周长,求剪掉部分的铁丝长度2、先化简,得再求值:2(2x3y)(3x2y1),其中x2,y3、先化简,再求值,其中x,y14、先化简,
5、再求值:,其中,5、先化简,再求值:(1)若,求的值;(2)若的平方比它本身还要大3,求的值-参考答案-一、单选题1、D【解析】【分析】根据加减互逆运算关系得出这个多项式为:,去括号,合并同类项可得该多项式为:,再根据题意列出进一步求解即可【详解】根据题意,这个多项式为:, ,则正确的结果为:, , ,故选:D【考点】本题主要考查多项式的运算,解题关键是掌握整式的加减运算顺序和运算法则及加减互逆的运算关系2、C【解析】【分析】先根据单项式的次数计算出m的值即可【详解】解:已知 mx2ym+1 是关于 x , y 的单项式,且的次数为5,即该单项式为故选:C【点评】本题考查了单项式的系数、次数的
6、概念;正确理解单项式的系数和次数是解决问题的关键3、B【解析】【分析】合并同类项后使得二次项系数为零即可;【详解】解析:,当这个多项式不含二次项时,有,解得故选B【考点】本题主要考查了合并同类项的应用,准确计算是解题的关键4、C【解析】【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来。叙述时,要求既要表明运算的顺序,又要说出运算的最终结果【详解】代数式的意义是a与b两数的平方的和故选:C【考点】此题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序5、D【解析】【分析】将多项式变形为,再将整体代入即可得解;【详解】解: ,=,故选择:D【考点】本题主
7、要考查代数式的求值,利用整体代入思想求解是解题的关键6、D【解析】【分析】先分清多项式的各项,然后按多项式升幂排列的定义排列【详解】解:3x2y-4x3y2-5xy3-1的项是3x2y、-4x3y2、-5xy3、-1,按x的升幂排列为-1-5xy3+3x2y-4x3y2,故D正确;故选D【考点】考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列要注意,在排列多项式各项时,要保持其原有的符号7、A【解析】【分析】根据去括号法则解答【详解】解:2+2x故选:A【考点】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与
8、括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号8、C【解析】【分析】根据单项式的定义,即可得到答案【详解】解:中,单项式有,共6个,故选C【考点】本题主要考查单项式的定义,掌握“数字和字母,字母和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键9、D【解析】【分析】利用数与字母的积的形式的代数式是单项式,单独的一个数或一个字母也是单项式,分母中含字母的不是单项式,进而判断得出即可【详解】根据单项式的定义可知,只有代数式0,-1,-x, a,是单项式,一共有4个.故答案选D.【考点】本题考查的知识点是单项式
9、,解题的关键是熟练的掌握单项式.10、D【解析】【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项【详解】A、B、C说法均是正确的,D中是四次单项式【考点】本题考察单项式知识的相关应用二、填空题1、 升幂 a 降幂【解析】【分析】观察可知x的指数逐渐增大,观察可知字母a的指数逐渐减小,由此即可求得答案.【详解】多项式是按照字母x的升幂排列的,多项式是按照字母a的降幂排列的,故答案为升幂;a,降幂.【考点】本题考查了多项式的排列,正确进行观察是解题的关键.2、8【解析】【详解】解:2m3n=4,原式=mn4mmn+6n=4m+6n=2(2m3n
10、)=2(4)=8,故答案为:83、(100-6x)【解析】【分析】根据单价数量=总价求出买桔子一共花的钱,然后用100减去已经购买的钱即可解答【详解】解:应找回(100-6x)元故答案为:(100-6x)【考点】本题考查用字母表示数,列代数式等知识,是基础考点,掌握相关知识是解题关键4、21【解析】【分析】根据题意可得到黑子的个数为4=41,最多可以围住白子的个数为1=212-21+1,黑子的个数为6=42-2,最多可以围住白子的个数为2=222-42+2;黑子的个数为7=42-1,最多可以围住白子的个数为3=222-32+1;黑子的个数为8=42,最多可以围住白子的个数为5=222-22+1
11、;黑子的个数为9=43-3,最多可以围住白子的个数为6=232-53+3,由此可设黑子的个数为4n-x,其中0x3,得到当x=0时,最多可以围住白子的个数为2n2-2n+1;当x=1时,最多可以围住白子的个数为2n2-3n+1;当x=2时,最多可以围住白子的个数为2n2-4n+2;当x=3时,最多可以围住白子的个数为2n2-5n+3即可求解【详解】解:根据题意得:黑子的个数为4=41,最多可以围住白子的个数为1=212-21+1,黑子的个数为6=42-2,最多可以围住白子的个数为2=222-42+2,黑子的个数为7=42-1,最多可以围住白子的个数为3=222-32+1,黑子的个数为8=42,
12、最多可以围住白子的个数为5=222-22+1,黑子的个数为9=43-3,最多可以围住白子的个数为6=232-53+3,可设黑子的个数为4n-x,其中0x3,当x=0时,最多可以围住白子的个数为2n2-2n+1;当x=1时,最多可以围住白子的个数为2n2-3n+1;当x=2时,最多可以围住白子的个数为2n2-4n+2;当x=3时,最多可以围住白子的个数为2n2-5n+3;当黑子的个数为15=44-1时,最多可以围住白子的个数为242-34+1=21个故答案为:21【考点】本题主要考查了数字类规律题,明确题意,准确得到规律是解题的关键5、【解析】【分析】(1)根据题意可得,求出M,然后求出即可;(
13、2)设,根据即,因此所求的.【详解】【方法1】由题意,得易得则正确的结果是【方法2】设,由题意,得,故,因此所求的则正确的结果是【考点】在整式运算应用过程中,我们可以发现,在尽量避免烦琐计算的同时要运用一些整体代入的思想,这样可以有效地将计算过程缩短,达到化繁为简的目的方法二在进行运算之前,先采用换元的思想将运算过程简化为,这样能在优化算法的同时减少计算量三、解答题1、(1);(2)【解析】【分析】(1)找到等量关系,依此列出代数式,再去括号合并同类项即可求解;(2)由(1)列出的代数式,代值即可求解【详解】(1)(2),答:剪掉部分的长度是【考点】本题考查了整式的加减,解答本题的关键是掌握多
14、项式加减的运算法则,合并同类项的法则和找到数量关系2、x-8y+1,7【解析】【分析】先去括号、合并同类项,再将未知数的值代入计算即可【详解】解:原式=4x6y-3x-2y+1=x-8y+1,当x2,y时,原式=2+4+1=7【考点】此题考查整式的化简求值,正确掌握整式的加减运算法则及正确计算是解题的关键3、x2+2y2,【解析】【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可【详解】2x2x2+2xy+2y22x2+2xy+4y22x2+x22xy2y22x2+2xy+4y2x2+2y2,当x,y1时,原式+2【考点】本题考查了整式的加减-化简求值,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键4、,-20【解析】【分析】原式去括号,再合并同类项化简,继而将a、b的值代入计算可得【详解】解:原式当,时,原式【考点】本题主要考查整式的化简求值,解题的关键是掌握去括号和合并同类项法则5、 (1)为-3或5;(2)9【解析】【分析】(1)原式去括号合并得到最简结果,把x的值代入计算即可求出值;(2)先求出,再整体代入即可(1)解:原式=若,则当,原式当,原式故A为-3或5(2)解:的平方比它本身还要大3,原式故A为9【考点】此题考查了整式的加减-化简求值,熟练掌握运算法则和整体代入思想是解本题的关键