1、人教版七年级数学上册第二章整式的加减同步测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、()ABCD2、按如图所示的运算程序,能使输出的结果为的是()ABCD3、下列代数式中是二次三项式的是()ABC
2、D4、计算的结果为()ABCD5、已知a、b、c在数轴上的位置如图,下列说法:abc0;c+a0;cb0正确的有()A1个B2个C3个D4个6、在中,是代数式的有()A5个B4个C3个D2个7、若,则的值等于()A5B1C-1D-58、下列是按一定规律排列的多项式:x+y,x2+2y,x3+3y,x4+4y,x5+5y,x6+6y,则第n个多项式是()A(1)nxn+nyB1nxn+nyC(1)n+1xn+nyD(1)nxn+(1)nny9、都是正整数,则多项式的次数是()ABCD不能确定10、已知,那么多项式的值为()A8B10C12D35第卷(非选择题 70分)二、填空题(5小题,每小题4
3、分,共计20分)1、 “勾股树”是以正方形一边为斜边向外作直角三角形,再以该直角三角形的两直角边分别向外作正方形,重复这一过程所画出来的图形,因为重复数次后的形状好似一棵树而得名假设如图分别是第一代勾股树、第二代勾股树、第三代勾股树,按照勾股树的作图原理作图,则第六代勾股树中正方形的个数为_2、如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是_(结果用含、代数式表示).3、若关于x、y的代数式中不含三次项,则m-6n的值为_.4、多项式是关于的四次三项式,则_5、已知
4、,且对于任意有理数,代数式 的值不变,则的值是_三、解答题(5小题,每小题10分,共计50分)1、代数式里的“”是“,”中某一种运算符号(1)如果“”是“”,化简:;(2)当时,请推算“”所代表的运算符号2、计算:(1)5(2)23+(36)6;(2);(3)5a273a5+a2a2;(4)2y3+(x2y+3xy2)2(xy2y3)3、请把多项式重新排列(1)按x降幂排列:(2)按y降幂排列4、如图,在一条道路的同侧有A,B,C,D四个小区,其中A与B相距xm,B与C相距150m,C与D相距xm,某公司的员工住在A小区的有20人,B小区的有6人,C小区的有15人,D小区的有8人(1)该公司计
5、划在B,C小区的位置任选一个作为班车停靠点,设所有员工步行到B,C小区的路程总和分别为,试求,;(用含x的代数式表示)(2)为了使所有员工步行到班车停靠点的路程总和最小,那么停靠点的位置应该选在B小区还是C小区?请说明理由5、已知,(1)化简:;(2)当时,求的值-参考答案-一、单选题1、A【解析】【分析】根据去括号法则解答【详解】解:2+2x故选:A【考点】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“-”,去括号后,括号里的各项都改变符号2、C【解析】【分析】由题可知,代入、值前需先判
6、断的正负,再进行运算方式选择,据此逐项进行计算即可得【详解】A选项,故将、代入,输出结果为,不符合题意;B选项,故将、代入,输出结果为,不符合题意;C选项,故将、代入,输出结果为,符合题意;D选项,故将、代入,输出结果为,不符合题意,故选C【考点】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行的正负判断,选择对应运算方式,然后再进行计算3、B【解析】【分析】根据多项式的次数和项数的概念,逐一判断即可【详解】解:A. 是三次三项式,不符合题意,B. 是二次三项式,符合题意,C. 是二次二项式,不符合题意,D. 是三次三项式,不符合题意,故选B【考点】本题主要考查多项式的次数和项数
7、,掌握多项式的次数是多项式的最高次项的次数,是解题的关键4、A【解析】【分析】根据整式的加减可直接进行求解【详解】解:;故选A【考点】本题主要考查整式的加减运算,熟练掌握整式的加减运算是解题的关键5、C【解析】【分析】根据a、b、c在数轴上的位置可得出a0、cb0,|b|a |c|,对各选项一一判断即可【详解】解:a、b、c在数轴上的位置如图,a0,cb0,|b|a |c|,a、b、c中两负一正,故abc0正确;a |c|,c0,a+ c0故c+a0不正确;c b,|b|a |c|cb0,故cb0,故0正确;正确的个数有3个故选择C【考点】本题考查利用数轴上表示数判定代数式的符号问题,掌握有理
8、数的加减乘除的符号的确定方法,数形结合思想的利用,关键从数轴确定a、b、c的大小与绝对值的大小6、A【解析】【分析】代数式是由数和字母组成,表示加、减、乘、除、乘方、开方等运算的式子,或含有字母的数学表达式,注意不能含有=、等符号【详解】,含有“=”和“”,所以不是代数式,则是代数式的有其5个,故选:A【考点】考查了代数式的定义,掌握代数式的定义是本题的关键,注意含有=、等符号的不是代数式7、C【解析】【分析】将两整式相加即可得出答案【详解】,的值等于,故选:C【考点】本题考查了整式的加减,熟练掌握运算法则是解本题的关键8、A【解析】【分析】从三方面(符号、系数的绝对值、指数)总结规律,再根据
9、规律进行解答便可【详解】解:按一定规律排列的多项式:x+y,x2+2y,x3+3y,x4+4y,x5+5y,x6+6y,则第n个多项式是:(1)nxn+ny,故选:A【考点】本题考查的是整式中的多项式的规律探究,掌握探究的方法是解题的关键9、解:“a的2倍与3 的和”是2a+故选B【考点】此题考查列代数式,解决问题的关键是读懂题意,找到所求的量的数量关系,注意字母和数字相乘的简写方法3D【解析】【分析】多项式的次数是“多项式中次数最高的项的次数”,因此多项式的次数是m,n中的较大数是该多项式的次数【详解】单项式的次数是m,单项式的次数是n,是常数项,又因为未知m和n的大小,所以多项式的次数无法
10、确定,故选:D【考点】此题考查多项式,解题关键在于掌握其定义10、C【解析】【分析】由多项式,可求出,从而求得的值,继而可求得答案【详解】解:故选C【考点】本题考查了求多项式的值,关键在于利用“整体代入法”求代数式的值二、填空题1、127【解析】【分析】由已知图形观察规律,即可得到第六代勾股树中正方形的个数【详解】解:第一代勾股树中正方形有1+2=3(个),第二代勾股树中正方形有1+2+22=7(个),第三代勾股树中正方形有1+2+22+23=15(个),.第六代勾股树中正方形有1+2+22+23+24+25+26=127(个),故答案为:127【考点】本题考查图形中的规律问题,解题的关键是仔
11、细观察图形,得到图形变化的规律2、a+8b【解析】【分析】观察可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),由此可得用9个拼接时的总长度为9a-8(a-b),由此即可得.【详解】观察图形可知两个拼接时,总长度为2a-(a-b),三个拼接时,总长度为3a-2(a-b),四个拼接时,总长度为4a-3(a-b),所以9个拼接时,总长度为9a-8(a-b)=a+8b,故答案为a+8b.【考点】本题考查了规律题图形的变化类,通过推导得出总长度与个数间的规律是解题的关键.3、0【解析】【分析】先将代数式降次排序,再得出式子解出即可.【详解】=代数式关于x、y不含三次项m
12、-2=0,1-3n=0m=2,n=故答案为:0【考点】本题考查代数式次数概念及代入求值,关键在于对代数式概念的掌握.4、【解析】【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可【详解】解:多项式2x5是关于x的四次三项式,m14,解得m5,故答案为:5【考点】此题考查的是多项式的次数,掌握多项式的次数的定义是解决此题的关键5、-2【解析】【分析】先根据代数式为定值求出a,b的值及的值,然后对所求代数式进行变形,然后代入计算即可.【详解】对于任意有理数,代数式 的值不变, 原式= 故答案为:-2【考点】本题主要考查代数式的求值,能够对代数式进行化简,变形是解题的关键.三、解答题
13、1、(1);(2)【解析】【分析】(1)把“”代入原式,去括号合并即可得到结果;(2)原式去括号后,把代入计算即可求出所求【详解】解:(1)原式(2)由题意得,当时,代入上式得,即,“”所表示的运算符号是“”【考点】此题考查了整式的加减,以及有理数的混合运算,熟练掌握运算法则是解本题的关键2、 (1)(2)25(3)(4)【解析】【分析】(1)先算平方,然后乘除,最后加减;(2)先提公因数,然后计算括号里的分数加减,最后算乘法;(3)直接合并同类项即可;(4)先去括号,然后合并同类项即可(1)解:原式(2)解:原式(3)解:原式(4)解:原式【考点】本题考查了有理数的运算解题的关键在于选取适当
14、的方法进行计算3、(1);(2)【解析】【分析】(1)观察x的指数,按x的指数从大到小排列,即可;(2)观察y的指数,按y的指数从大到小排列,即可【详解】解:(1)按x降幂排列:;(2)按y降幂排列:【考点】本题主要考查多项式的相关概念,掌握多项式的升幂或降幂排列的意义,是解题的关键4、 (1),(2)选B小区,见解析【解析】【分析】(1)当停靠点在B小区时或当停靠点在C小区时,再求解需要步行的人员的路程之和即可,(2)由 再比较两个代数式的大小即可得到答案.(1)解:当停靠点在B小区时,m;当停靠点在C小区时,m.(2)选B小区,理由如下:因为x0,所以28x+345028x+3900所以当停靠点在B小区时,所有员工步行到停靠点路程和最小.【考点】本题考查的是列代数式,比较代数式的值的大小,理解题意,用含有的代数式表示步行的人员的路程之和是解本题的关键.5、 (1)(2)0【解析】【分析】(1),再将A和B的代数式代入化简即可;(2)由(1),得=,将代入求值即可(1)解:,原式=(2)解:由(1),得=,当时,原式=0【考点】本题考查整式加减的应用,注意先化简,正确的计算能力是解决问题的关键