1、京改版八年级数学上册第十章分式章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是
2、原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为万千克,根据题意,列方程为ABCD2、约分:()ABCD3、在代数式,中属于分式的有()A2个B3个C4个D5个4、甲、乙两人骑自行车从相距60千米的A、B两地同时出发,相向而行,甲从A地出发至2千米时,想起有东西忘在A地,即返回去取,又立即从A地向B地行进,甲、乙两人恰好在AB中点相遇,已知甲的速度比乙的速度每小时快2.5千米,求甲、乙两人的速度,设乙的速度是x千米/小时,所列方程正确的是()ABCD5、计算(a2)3a2a3a2a3的结果是()A2a5aB2a5Ca5Da
3、66、已知关于的分式方程的解为正数,则的取值范围为()AB且CD且7、若关于x的分式方程有增根,则m的值是()A1B1C2D28、的结果是()ABCD19、要把分式方程化为整式方程,方程两边要同时乘以()ABCD10、计算,则x的值是A3B1C0D3或0第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若,则_2、某校为推进“数学文化智慧阅读”活动,采购了一批图书其中九章算术)和几何原本的单价共80元,用640元购进九章算术与用960元购进几何原本的数量相同求这两本书的单价设九章算术的单价为x元,依题意,列出方程:_3、化简:_4、若方程的解与方程的解相同,则_5、化简:
4、 _三、解答题(5小题,每小题10分,共计50分)1、现有一装修工程,若甲、乙两队装修队合作,需要12天完成;若甲队先做5天,剩余部分再由甲乙两队合作,还需要9天才能完成求:(1)甲乙两个装修队单独完成分别需要几天?(2)已知甲队每天施工费用4000元,乙队每天施工费用为2000元,要使该工程施工总费用为70000元,则甲装修队施工多少天?(3)甲装修队有装修工人12人,乙装修队有装修工人10人,该工程需要在13天内(包括13天)完成,该工程由甲乙两队合作完成,两队合作4天后,乙队另有任务需调出部分人员,则乙队最多调走多少人?2、先化简再求值:,其中3、阅读材料,并解决问题,我们知道,分子比分
5、母小的分数叫做“真分数”,分子大于或等于分母的分数,叫做“假分数”类似地,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于分母的次数时,我们称之为“真分式”如,这样的分式就是假分式;再如,这样的分式就是真分式;假分数可以化成(即)带分数的形式,类似的,假分式也可以化为带分式(整式与真分式的和或差)的形式如:,再如:这样,分式就被拆分成了带分式(即一个整式()与一个分式()的差)的形式(1)判断:是真分式还是假分式?_(填“真分式”或“假分式”);(2)将“假分式”化成带分式的形式;(3)思考:当x取什么整数时,分式的值为整
6、数?4、计算:5、先约分,再求值:其中-参考答案-一、单选题1、A【解析】【分析】根据题意可得等量关系:原计划种植的亩数改良后种植的亩数亩,根据等量关系列出方程即可【详解】设原计划每亩平均产量万千克,则改良后平均每亩产量为万千克,根据题意列方程为:故选【考点】本题考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系2、A【解析】【分析】先进行乘法运算,然后约去分子分母的公因式即可得到答案.【详解】原式=,故选A.【考点】本题主要考查分式的乘法运算法则,掌握约分,是解题的关键.3、A【解析】【分析】判断分式的依据是:看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则
7、不是分式【详解】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,所以是分式的是:,共有2个,故选:A【考点】本题考查分式的定义,能够准确判断代数式是否为分式是解决本题的关键4、D【解析】【分析】乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,利用时间相等列出方程即可【详解】设乙的速度是x千米/小时,则甲的速度为(x+2.5)千米/小时,中点相遇,乙走30千米,甲走34千米,根据时间相等,得,故选D【考点】本题考查了分式方程的应用题,正确理解题意,根据相遇时间相等列出方程是解题的关键5、D【解析】【详解】【
8、分析】先分别进行幂的乘方、同底数幂的乘法、同底数幂的除法运算,然后再进行合并同类项即可.【详解】原式=a23+a2+3-a2-(-3)=a6+a5-a5=a6,故选D.【考点】本题考查了有关幂的运算,熟练掌握“幂的乘方,底数不变,指数相乘”、“同底数幂的乘法,底数不变,指数相加”、“同底数幂的除法,底数不变,指数相减”是解题的关键.6、D【解析】【分析】解分式方程用k表示出x,根据解为正数及分式有意义的条件得到关于k的不等式组,解不等式组即可得到答案【详解】通分得:,x=2-k,的解为正数,且分式有意义,解得:且,故选:D【考点】本题考查分式方程与不等式的综合应用,解分式方程得到关于k的不等式
9、组是解题关键,注意分式有意义的条件,避免漏解7、C【解析】【分析】先把分式方程化为整式方程,再把增根x=2代入整式方程,即可求解【详解】解:,去分母得:,关于x的分式方程有增根,增根为:x=2,即:m=2,故选C【考点】本题主要考查解分式方程以及分式方程的增根,把分式方程化为整式方程是解题的关键8、B【解析】【分析】先计算分式的乘方,再把除法转换为乘法,约分后即可得解【详解】解:故选:B【考点】此题主要考查了分式的混合运算,熟练掌握运算法则是解答此题的关键9、D【解析】【分析】根据最简公分母的确定方法确定分式的最简公分母即可解答.【详解】解:分式的最简公分母2x(x-2),把分式方程化为整式方
10、程,方程两边要同时乘以2x(x-2).故选D.【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根10、D【解析】【分析】根据实数的性质分类讨论即可求解【详解】当x=0,x-20时,即x=0;当x-2=1时,即x=3,故选D【考点】此题主要考查实数的性质,解题的关键是熟知负指数幂的运算法则二、填空题1、【解析】【分析】根据负整数指数幂的逆运算解答即可【详解】x-3n=6,.故答案是:.【考点】考查负整数指数幂问题,解题关键是计算负整数指数幂时,一定要根据负整数指数幂的意义变形2、【解析】【分析】设九章算术的单价为x元,几何原本的
11、单价为(80-x)元,根据等量关系:用640元购进九章算术与用960元购进几何原本的数量相同列方程即可【详解】解:设九章算术的单价为x元,几何原本的单价为(80-x)元,依题意,列出方程:故答案为:【考点】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列方程是解题关键3、【解析】【分析】根据分式的乘法和除法法则进行计算即可【详解】解:【考点】本题主要考查了分式的乘法和除法法则,在乘除过程中可以进行约分化简,使问题简单化,要注意将结果化到最简,熟练掌握分式的乘除法法则是解决本题的关键4、【解析】【分析】求出第二个分式方程的解,代入第一个方程中计算即可求出a的值【详解
12、】解:方程去分母得:3x6,解得:x2,经检验x2是分式方程的解,根据题意将x2代入第一个方程得:解得:,经检验是原分式方程的解,则故答案为:【考点】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值5、【解析】【分析】根据分式混合运算的顺序,依次计算即可【详解】=故答案为【考点】本题考查了分式的混合运算,熟练掌握约分,通分,因式分解的技巧是解题的关键三、解答题1、(1)甲、乙两装修队单独完成此项工程分别需要20天、30天;(2)10天;(3)2人【解析】【分析】(1)等量关系为:甲的工作效率5+甲乙合作的工作效率9=1,先算出甲单独完成此项工程需要多少个月而后算出乙单独完成
13、需要的时间;(2)两个关系式:甲乙两个工程队需完成整个工程;工程施工总费用为70000元(3)设乙队调走m人,利用(1)中所求数据得出甲乙两队每人一天完成的工作量,进而得出不等式求出即可【详解】解:(1)设甲装修队单独完成此项工程需要x天根据题意,得,解得x=20,经检验,x=20是原方程的解,答:甲、乙两装修队单独完成此项工程分别需要20,30天(2)设实际工作中甲、乙两装修队分别做a、b天根据题意,得,解得a=10,b=15答:要使该工程施工总费用为70000元,甲装修队应施工10天(3)设乙装修队调走m人,由题意可得:,解得:m,m的最大整数值为2,答:乙队最多调走2人【考点】本题考查了
14、分式方程的应用以及不等式解法与应用,利用总工作量为1得出等式方程是解决问题的关键2、;1【解析】【分析】先把分式化简后,再把的值代入求出分式的值即可【详解】原式当时,原式【考点】本题考查了分式的化简求值,熟练分解因式是解题的关键3、 (1)假分式(2)(3)0【解析】【分析】(1)根据题意判断,即可求解;(2)利用完全平方公式化简分子,即可求解;(3)分式若为整数则真分式的值要为整数,即可求解;(1)解:分子次数等于分母次数,故:是假分式;(2)解:原式=;(3)原式=,当x=0时,真分式为整数【考点】本题主要考查分式的定义和化简,做题的关键是把分子中高于或等于分母次数的项通过凑项与分母分离4、.【解析】【分析】最简公分母为(ab)(ab),所以通分得,然后对分子运算,得,最后约分.【详解】【考点】在进行分式的加减运算时,在通分前如果分子分母有相同的项,要注意先把相同项约掉,且一定要保持最终的结果是最简分式.5、【解析】【分析】先把分式的分子分母分解因式,约分后把a、b的值代入即可求出答案【详解】解:原式= = 当时原式=【考点】本题考查了分式的约分,解题的关键是熟练进行分式的约分,本题属于基础题型