1、八年级数学上册第十一章实数和二次根式专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算:,其中结果正确的个数为()A1B2C3D42、已知 , , ,则下列大小关系正确的是()AabcBcb
2、aCbacDacb3、有下列说法:无理数是无限小数,无限小数是无理数;无理数包括正无理数、和负无理数;带根号的数都是无理数;无理数是含有根号且被开方数不能被开尽的数;是一个分数其中正确的有()A个B个C个D个4、实数a在数轴上的位置如图所示,则+化简后为()A7B7C2a15D无法确定5、实数a,b在数轴上对应的点的位置如图所示,下列结论正确的是()AabBabCabDab6、在下列各数中是无理数的有(),(相邻两个之间有个),A个B个C个D个7、下列等式正确的是()A()2=3B=3C=3D()2=38、下列说法正确的是A的平方根是B的算术平方根是4C的平方根是D0的平方根和算术平方根都是0
3、9、下列各式是最简二次根式的是()ABCD10、下列二次根式是最简二次根式的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算的结果是_2、比较大小:_3、已知,当分别取1,2,3,2020时,所对应值的总和是_4、对于实数a,b,定义运算“”如下:ab=a2ab,例如,53=5253=10若(x+1)(x2)=6,则x的值为_5、观察下面的变化规律:,根据上面的规律计算:_三、解答题(5小题,每小题10分,共计50分)1、把下列各数填入相应的集合内、0、0.3737737773(相邻两个3之间的7逐次加1个),(1)有理数集合(2)无理数集合(3)负
4、实数集合 2、计算:(1);(2)3、阅读下列材料:设:,则.由-,得,即.所以.根据上述提供的方法.把和化成分数,并想一想.是不是任何无限循环小数都可以化成分数?4、根据已学知识,我们已经能比较有理数的大小,下面介绍一种新的比较大小的方法:3210,32;(2)130,21;(2)(2)0,22像上面这样,根据两数之差是正数、负数或0,判断两数大小关系的方法叫做作差法比较大小(1)请将上述比较大小的方法用字母表示出来:若,则_;若,则_;若,则_;(2)请用上述方法比较下列代数式的大小(直接在空格中填写答案)_;当时,_;(3)试比较与的大小,并说明理由5、如果一个正数m的两个平方根分别是2
5、a3和a9,求2m2的值-参考答案-一、单选题1、D【解析】【分析】根据二次根式的运算法则即可进行判断【详解】,正确;正确;正确;,正确,故选D【考点】此题主要考查二次根式的运算,解题的关键是熟知二次根式的性质:;2、A【解析】【分析】将a,b,c变形后,根据分母大的反而小比较大小即可【详解】解:,又,故选:A.【考点】此题考查了二次根式的大小比较,将根式进行适当的变形是解本题的关键3、A【解析】【分析】根据无理数、分数的概念判断【详解】解:无限不循环小数是无理数,错误是有理数,错误是有理数,错误也是无理数,不含根号,错误是一个无理数,不是分数,错误故选:【考点】本题考查实数的概念,掌握无理数
6、是无限不循环小数是求解本题的关键4、A【解析】【详解】根据二次根式的性质可得:+,因为,所以原式=,故选A.5、D【解析】【分析】根据数轴即可判断a和b的符号以及绝对值的大小,根据有理数的大小比较方法进行比较即可求解【详解】根据数轴可得:,且,则,选项A错误;,选项B错误;,选项C错误;,选项D正确;故选:D【考点】本题考查的是数轴与实数的大小比较等相关内容,会利用数轴比较实数的大小是解决问题的关键6、B【解析】【分析】根据无理数是无限不循小数,可得答案【详解】解:,是无理数,故选:B【考点】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数7、A【解析】【分析】根据二次
7、根式的性质把各个二次根式化简,判断即可【详解】解:()2=3,A正确,符合题意;=3,B错误,不符合题意;=,C错误,不符合题意;(-)2=3,D错误,不符合题意;故选A【考点】本题考查的是二次根式的化简,掌握二次根式的性质:=|a|是解题的关键8、D【解析】【分析】根据一个正数有两个平方根,且这两个平方根互为相反数及平方根的定义即可判断各选项【详解】解:A、的平方根为,故本选项错误;B、-16没有算术平方根,故本选项错误;C、(-4)2=16,16的平方根是4,故本选项错误;D、0的平方根和算术平方根都是0,故本选项正确故选D【考点】本题考查了平方根和算术平方根的定义,一个正数有两个平方根,
8、其中正的平方根称为算术平方根,负数没有平方根,0的平方根和算术平方根都是0.9、A【解析】【分析】根据最简二次根式的定义即可求出答案【详解】解:A、是最简二次根式,故选项正确;B、=,不是最简二次根式,故选项错误;C、,不是最简二次根式,故选项错误;D、,不是最简二次根式,故选项错误;故选:A【考点】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型10、D【解析】【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】A、被开方数含分母,故A不符合题意; B、被开方数,含分母,故B不符合题意; C、被开方数含能开得尽方的因数或
9、因式,故C不符合题意; D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意.故选:D【考点】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式二、填空题1、【解析】【分析】先化成最简二次根式,再根据二次根式的加减法法则计算出分母,最后约分即可【详解】,故答案为:【考点】本题考查了二次根式的混合运算,掌握二次根式的加减法法则是解题的关键2、【解析】【分析】先估算的大小,然后再比较无理数的大小即可【详解】解:,;故答案为:【考点】本题考查了实数的比较大小,无理数的估算,解题关键是正确掌握实数比较大小的法则3、【解析】【
10、分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得【详解】当时,当时,则所求的总和为故答案为:【考点】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键4、1【解析】【分析】根据新定义运算对式子进行变形得到关于x的方程,解方程即可得解.【详解】由题意得,(x+1)2(x+1)(x2)=6,整理得,3x+3=6,解得,x=1,故答案为1【考点】本题考查了解方程,涉及到完全平方公式、多项式乘法的运算等,根据题意正确得到方程是解题的关键5、【解析】【分析】本题可通过题干信息总结分式规律,按照该规律展开原式,根据邻项相消求解本题【详解】由题干信息可
11、抽象出一般规律:(均为奇数,且)故故答案:【考点】本题考查规律的抽象总结,解答该类型题目需要准确识别题干所给的例子包含何种规律,严格按照该规律求解三、解答题1、 (1),0,(2),0.3737737773(3),【解析】【分析】(1)根据有理数的定义进行判定即可得出答案;(2)根据无理数的定义进行判定即可得出答案;(3)根据负实数的定义进行判定即可得出答案(1)有理数集合:,,0,(2)无理数集合:,0.3737737773(3)负实数集合:,【考点】本题主要考查了实数的分类,熟练掌握实数的分类进行求解是解决本题的关键.2、 (1)(2)【解析】【分析】(1)先化简,再合并同类二次根式;(2
12、)先化简括号内二次根式再合并,再利用二次根式乘法计算即可(1)解: ;(2)解:【考点】本题考查了二次根式的混合运算,掌握二次根式的性质是解本题的关键3、,.任何无限循环小数都可以化成分数.【解析】【分析】设则,;由,得;由已知,得,所以任何无限循环小数都可以这样化成分数.【详解】解:设则,由-,得,即.所以.由已知,得,所以.任何无限循环小数都能化成分数.【考点】考核知识点:无限循环小数和有理数.模仿,理解材料是关键.4、 (1),=,(2),(3),理由见详解【解析】【分析】(1)根据作差法可作答;(2)利用作差法即可作答;(3)结合整式的加减混合运算法则,利用作差法即可作答;(1),;,;,故答案为:、=、;(2),;,又,故答案为:、;(3),理由如下:,又,【考点】本题考查了实数比较大小、二次根式的加减混合运算、整式的加减混合运算等知识,掌握相关的加减混合运算法则是解答本题的关键5、48【解析】【分析】根据一个正数的两个平方根互为相反数求出a的值,利用平方根和平方的关系求出m,再求出2m-2的值【详解】解:一个正数的两个平方根分别是2a3和a9,(2a3)+(a9)=0,解得a= 4,这个正数为(2a3) 2=52=25,2m2=2252= 48;故答案为48.【考点】本题考查平方根.