收藏 分享(赏)

2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx

上传人:a**** 文档编号:639168 上传时间:2025-12-12 格式:DOCX 页数:19 大小:349.87KB
下载 相关 举报
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第1页
第1页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第2页
第2页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第3页
第3页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第4页
第4页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第5页
第5页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第6页
第6页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第7页
第7页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第8页
第8页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第9页
第9页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第10页
第10页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第11页
第11页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第12页
第12页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第13页
第13页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第14页
第14页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第15页
第15页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第16页
第16页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第17页
第17页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第18页
第18页 / 共19页
2022-2023学年度京改版八年级数学上册期末综合测评试题 (B)卷(含详解).docx_第19页
第19页 / 共19页
亲,该文档总共19页,全部预览完了,如果喜欢就下载吧!
资源描述

1、京改版八年级数学上册期末综合测评试题 (B)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,与相交于点O,不添加辅助线,判定的依据是()ABCD2、如图,与交于点,则的度数为()ABCD3、下列各组

2、数据为三角形的三边,能构成直角三角形的是()A4,8,7B2,2,2C2,2,4D13,12,54、化简的结果为,则()A4B3C2D15、观察“赵爽弦图”(如图),若图中四个全等的直角三角形的两直角边分别为a,b,根据图中图形面积之间的关系及勾股定理,可直接得到等式()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列说法中其中不正确的有()A无限小数都是无理数B无理数都是无限小数C-2是4的平方根D带根号的数都是无理数2、如图,为估计池塘岸边A,B两点间的距离,小方在池塘的一侧选取一点O,测得米,米,A,B间的距离可能是()A12米B10米C15米D8米3、下列命题中,真命题为(

3、)A等腰三角形两腰上的高相等B三角形的中线都是过三角形的某一个顶点,且平分对边C在ABC中,若A=B-C,则ABC是直角三角形D等腰三角形的高、中线、角平分线互相重合4、下面关于定理的说法正确的是()A定理是真命题B定理的正确性不需要证明C定理可以作为推理论证的依据D定理的正确性需证明5、实数a,b,c,d在数轴上的对应点的位置如图所示,则不正确的结论是()Aa3b3B3c3dC1a1cDbd0第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、式子有意义的条件是_2、在继承和发扬红色学校光荣传统,与时俱进,把育英学校建成一所文明的、受社会尊敬的学校升旗仪式上,如图所示,一

4、根旗杆的升旗的绳垂直落地后还剩余1米,若将绳子拉直,则绳端离旗杆底端的距离有5米则旗杆的高度_3、如图,在等腰直角三角形ABC中,BAC90,在BC上截取BDBA,作ABC的平分线与AD相交于点P,连接PC,若ABC的面积为2cm2,则BPC的面积为 _cm24、25的算数平方根是_,的相反数为_5、给出表格:0.00010.011100100000.010.1110100利用表格中的规律计算:已知,则_(用含的代数式表示)四、解答题(5小题,每小题8分,共计40分)1、某工厂计划在规定时间内生产24000个零件由于销售商突然急需供货,工厂实际工作效率比原计划提高了50%,并提前5天完成这批零

5、件的生产任务求该工厂原计划每天加工这种零件多少个?2、一个数值转换器,如图所示:(1)当输入的x为81时输出的y值是_;(2)若输入有效的x值后,始终输不出y值,请写出所有满足要求的x的值;(3)若输出的y是,请写出两个满足要求的x值3、(1)计算:;(2)因式分解:.4、阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式例如:与,与(1)请你写出两个二次根式,使它们互为有理化因式:_,这样化简一个分母含有二次根式的式子时,采用分母、分子同乘分母的有理化因式的方法就可以了例如:(2)请仿照上述方法化简:;(3)比较与

6、的大小5、如图,在中,,;点在上,连接并延长交于(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由-参考答案-一、单选题1、B【解析】【分析】根据,正好是两边一夹角,即可得出答案【详解】解:在ABO和DCO中,故B正确故选:B【考点】本题主要考查了全等三角形的判定,熟练掌握两边对应相等,且其夹角也对应相等的两个三角形全等,是解题的关键2、A【解析】【分析】先根据三角形的内角和定理可求出,再根据平行线的性质即可得【详解】故选:A【考点】本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键3、D【解析】【分析】根据勾股定理的逆定理,看较小的两边的平方和是否等于最大

7、的边的平方即可进行判断.【详解】A、42+7282,故不能构成直角三角形;B、22+2222,故不能构成直角三角形;C、2+2=4,故不能构成三角形,不能构成直角三角形;D、52+122=132,故能构成直角三角形,故选D【考点】本题考查的是用勾股定理的逆定理判断三角形的形状,即若三角形的三边符合a2+b2=c2,则此三角形是直角三角形4、A【解析】【分析】根据分式的运算法则即可求出答案【详解】解:依题意得:,故选:【考点】本题考查分式的运算,解题的关键是熟练运用分式的运算法则5、C【解析】【分析】根据小正方形的面积等于大正方形的面积减去4个直角三角形的面积可得问题的答案【详解】标记如下:,(

8、ab)2a2+b24a22ab+b2故选:C【考点】此题考查的是利用勾股定理的证明,可以完全平方公式进行证明,掌握面积差得算式是解决此题关键二、多选题1、AD【解析】【分析】无理数是无限不循环小数,无限小数包括无限循环小数和无限不循环小数,无理数有三类,分别是:含有根号,开根开不尽的一类数;含有的一类数;以无限不循环小数的形式出现的特定结构的数,4的平方根有两个,互为相反数,根据相关定义逐一判断即可【详解】解:A、无理数是无限不循环小数,无限小数包括无限不循环小数和无限循环小数,选项A错误;B、无理数是无限不循环小数,属于无限小数,选项B正确;C、4的平方根分别是2和-2,所以-2是4的平方根

9、,选项C正确;、带根号,且开方开不尽的是无理数,选项错误故选:AD【考点】本题考查无理数的定义,无限小数的分类,和无理数的分类,以及平方根的定义,根据相关知识点判断是解题关键2、ABD【解析】【分析】根据三角形的三边之间的关系逐一判断即可得到答案.【详解】解:中, 符合题意,不符合题意;故选:【考点】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.3、ABC【解析】【分析】根据三角形的面积,等腰三角形三线合一的性质,三角形中线的定义对各选项分析判断后利用排除法求解【详解】解:A、根据三角形的面积两腰相等,所以腰上的高相等,故原命题为真

10、命题;B、三角形的中线都是过三角形的某一个顶点,且平分对边,故原命题为真命题;C、在ABC中,若A=B-C,即A+C =B,A+B+C=180,2B =180,即B =90,则ABC是直角三角形,故原命题为真命题;D、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,故原命题为假命题;故选:ABC【考点】本题综合考查了等腰三角形的性质、三角形中线的定义、三角形内角和定理,熟练掌握并灵活运用这些知识是解决本题的关键4、ACD【解析】【分析】利用定理的定义和基本事实的定义分别判断后即可确定正确的选项【详解】解:A、基本事实和定理都是真命题,正确,符合题意;B、基本事实的正确性不需证明,定

11、理的正确性需证明,故错误,不符合题意;C、基本事实和定理都可以作为推理论证的依据,正确,符合题意;D、基本事实的正确性不需证明,定理的正确性需证明,正确,符合题意,故选择ACD.【考点】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题;经过推论、论证得到的真命题称为定理,熟练掌握相关基本概念是解题的关键5、ABD【解析】【分析】依据实数a,b,c,d在数轴上的对应点的位置,即可得到a,b,c,d的大小关系,进而利用不等式的基本性质得出结论【详解】解:由实数a,b,c,d在数轴上的对应点的位置可知,ab,a3b3,故A选项符合题意;cd,3c3d,故B选项符

12、合题意;ac,1a1c,故C选项不符合题意;bd,bd0,故D选项符合题意;故选ABD【考点】本题考查了实数与数轴和不等式的基本性质,观察数轴,逐一分析四个选项的正误是解题的关键三、填空题1、且【解析】【分析】式子有意义,则x-20,x-30,解出x的范围即可.【详解】解:式子有意义,则x-20,x-30,解得:,故答案为且.【考点】此题考查二次根式及分式有意义,熟练掌握二次根式的被开方数大于等于0,分式的分母不为0,及解不等式是解决本题的关键.2、12米【解析】【分析】设旗杆的高度是x米,绳子长为(x+1)米,旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求出x的值,从而求出旗杆的高度

13、【详解】解:设旗杆的高度为米,根据题意可得:,解得:,答:旗杆的高度为12米故答案为:12米【考点】本题考查勾股定理的应用,关键看到旗杆,拉直的绳子和BC构成直角三角形,根据勾股定理可求解3、1【解析】【分析】根据等腰三角形三线合一的性质即可得出,即得出和是等底同高的三角形,和是等底同高的三角形,即可推出,即可求出答案【详解】BDBA,BP是ABC的角平分线,和是等底同高的三角形,和是等底同高的三角形,故答案为:1【考点】本题考查等腰三角形的性质掌握等腰三角形“三线合一”是解答本题的关键4、 5 3【解析】【分析】根据算术平方根的定义和实数的相反数分别填空即可【详解】25的算数平方根是5;的相

14、反数为3;故答案为:5,3【考点】本题考查了实数的性质,主要利用了算术平方根,立方根的定义以及相反数的定义,熟记概念与性质是解题的关键5、【解析】【分析】根据题意易得,然后问题可求解【详解】解:由,则;故答案为:【考点】本题主要考查二次根式的性质,熟练掌握二次根式的性质是解题的关键四、解答题1、该工厂原计划每天加工这种零件1600个【解析】【分析】设该工厂原计划每天加工这种零件x个,则实际每天加工这种零件(1+50%)x个,根据工作时间=工作总量工作效率结合实际比原计划少用5天完成这批零件的生产任务,即可得出关于x的分式方程,解之经检验后即可得出结论【详解】解:设该工厂原计划每天加工这种零件x

15、个,则实际每天加工这种零件(1+50%)x个,依题意,得:本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则解得:x1600,经检验,x1600是原方程的解,且符合题意答:该工厂原计划每天加工这种零件1600个【考点】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键2、 (1);(2),1;(3),(答案不唯一)【解析】【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,1的算术平方根是1即可判断;(3)根据运算法则,进行逆运算即可求得无数个满足条件的数(1)解:当时,取算术平方根,不是无理数,继续取算术平方根,不是无理数,继续取算术平方

16、根得,是无理数,所以输出的y值为;(2)解:当,1时,始终输不出y值因为0,1的算术平方根是0,1,一定是有理数;(3)解:4的算术平方根为2,2的算术平方根是,都满足要求【考点】本题考查了算术平方根的计算和无理数的判断,正确理解给出的运算方法是关键3、(1);(2)【解析】【分析】(1)原式利用零指数幂、负整数指数幂的性质计算即可求出值;(2)原式利用平方差公式分解即可【详解】解:(1)原式;(2)原式;【考点】此题考查了实数运算与因式分解运用公式法,熟练掌握因式分解的方法是解本题的关键4、 (1)与(答案不唯一)(2)(3)【解析】【分析】(1)利用互为有理化因式的定义求解;(2)把分子和

17、分母分别乘以,然后利用二次根式的乘法法则运算即可;(3)分别化简与,再利用无理数比较大小的方法比较即可(1)根据互为有理化因式的定义可得:与(答案不唯一)(2);(3),【考点】本题考查二次根式的混合运算,:先把二次根式化简为最简二次根式,然后进行二次根式的乘除运算,在合并即可,解题的关键是熟练掌握并运用二次根式的性质和运算法则5、(1)见解析;(2)见解析;(3)若 ,则,理由见解析【解析】【分析】(1)首先利用SAS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3)直接根据等腰三角形三线合一得出,又因为,则结论可证【详解】解答:(1)证明:, 在和中, ;(2)证明:,即,;(3)若 ,则理由如下:,BE是中线,【考点】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键

展开阅读全文
相关资源
  • 专题6.22 相似三角形的性质(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.22 相似三角形的性质(巩固篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.22 反比例函数(折叠问题)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.22 反比例函数(折叠问题)(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.22 一次函数与二元一次方程(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx专题6.22 一次函数与二元一次方程(知识梳理与考点分类讲解)-2023-2024学年八年级数学上册基础知识专项突破讲与练(苏科版).docx
  • 专题6.22 《反比例函数》全章复习与巩固(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.22 《反比例函数》全章复习与巩固(巩固篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.21 相似三角形的性质(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.21 相似三角形的性质(基础篇)(专项练习)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.21 反比例函数(折叠问题)(综合篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.21 反比例函数(折叠问题)(综合篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.21 《反比例函数》全章复习与巩固(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.21 《反比例函数》全章复习与巩固(基础篇)(专项练习)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 专题6.20 相似三角形的性质(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx专题6.20 相似三角形的性质(知识讲解)-2022-2023学年九年级数学下册基础知识专项讲练(苏科版).docx
  • 专题6.20 反比例函数和一次函数综合(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx专题6.20 反比例函数和一次函数综合(培优篇)(专项练习)-2022-2023学年八年级数学下册基础知识专项讲练(浙教版).docx
  • 专题6.20 《反比例函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx专题6.20 《反比例函数》全章复习与巩固(知识讲解)-2022-2023学年九年级数学上册基础知识专项讲练(北师大版).docx
  • 猜你喜欢
    相关搜索

    当前位置:首页 > 语文

    Copyright@ 2020-2024 m.ketangku.com网站版权所有

    黑ICP备2024021605号-1