1、京改版八年级数学上册期中模拟考试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、计算的结果正确的是()A1BC5D92、将的分母化为整数,得()ABCD3、下列实数中,为有理数的是()ABC1D4
2、、当x2时,分式的值是()A15B3C3D155、按如图所示的运算程序,能使输出y值为1的是()ABCD二、多选题(5小题,每小题4分,共计20分)1、下列二次根式化成最简二次根式后,与被开方数相同的是()ABCD2、下列计算中,正确的有()A(3xy2)39x3y6B(2x3)24x6C(a2m)3a6mD2a2a12a3、下列计算不正确的是()ABCD4、下列结论中不正确的是()A数轴上任一点都表示唯一的有理数B数轴上任一点都表示唯一的无理数C两个无理数之和一定是无理数D数轴上任意两点之间还有无数个点5、下列说法不正确的是()A无理数就是开方开不尽的数B无理数是无限不循环小数C带根号的数都
3、是无理数D无限小数都是无理数第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、已知为实数,规定运算:,按上述方法计算:当时,的值等于_2、对于实数,定义运算若,则_3、计算610的结果是_4、已知数a、b、c在数粒上的位置如图所示,化简的结果是_5、计算_四、解答题(5小题,每小题8分,共计40分)1、徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?2、先化简:,然后在的非负整数集中选取一个合适的数
4、作为的值代入求值3、计算:(1)(2020)02+|1|(2)4、将下列数按要求分类,并将答案填入相应的括号内:,-0.25,206,0,21%,2.010010001正分数集合负有理数集合无理数集合5、已知(1)求代数式的值;(2)求代数式的值-参考答案-一、单选题1、A【解析】【分析】利用二次根式的乘除法则计算即可得到结果【详解】解:,故选:A【考点】本题主要考查了二次根式的乘除法,熟练掌握运算法则是解题的关键2、D【解析】【分析】根据分式的基本性质求解【详解】解:将的分母化为整数,可得故选:D【考点】本题考查一元一次方程的化简,熟练掌握分式的基本性质解题关键3、C【解析】【分析】根据有理
5、数是有限小数或无限循环小数可判断C,无理数是无限不循环小数,可判断A、B、D即可【详解】解:,是无理数,1是有理数故选C【考点】本题考查了实数,正确区分有理数与无理数是解题的关键4、A【解析】【分析】先把分子分母进行分解因式,然后化简,最后把代入到分式中进行正确的计算即可得到答案.【详解】解:把代入上式中原式故选A.【考点】本题主要考查了分式的化简求值,解题的关键在于能够熟练掌握相关知识点进行求解运算.5、D【解析】【分析】逐项代入,寻找正确答案即可.【详解】解:A选项满足mn,则y=2m+1=3; B选项不满足mn,则y=2n-1=-1; C选项满足mn,则y=2m+1=3; D选项不满足m
6、n,则y=2n-1=1; 故答案为D;【考点】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值.二、多选题1、BD【解析】【分析】由题意根据二次根式的性质把各个二次根式化简,进而根据同类二次根式的概念判断即可【详解】解:A、,与的被开方数不相同,故不符合题意;B、,与的被开方数相同,故符合题意;C、,与的被开方数不相同,故不符合题意;D、,与的被开方数相同,故符合题意;故选BD【考点】本题考查的是同类二次根式,熟练掌握同类二次根式的概念以及二次根式的性质是解题的关键2、BD【解析】【分析】根据幂的运算即可依次判断【详解】A.(3xy2)327x3y6,故错误;
7、B.(2x3)24x6,正确;C.(a2m)3-a6m,故错误;D. 2a2a12a,正确;故选BD【考点】此题主要考查幂的运算,解题的关键是熟知同底数幂的运算法则及负指数幂的特点3、ABD【解析】【分析】根据根式的性质即可化简求值【详解】解:A、是最简二次根式,不能再化简,故A符合题意;B、=,故B符合题意;C、,故C不符合题意;D. 根据二次根式乘法法则的条件知,D中所给的算式、无意义,故D符合题意;故选ABD【考点】本题考查了利用二次根式的性质进行化简,属于简单题,熟悉二次根式的性质是解题关键4、ABC【解析】【分析】根据实数与数轴上的点的对应关系和无理数的运算进行分析判断【详解】A选项
8、:数轴上的点与实数是一一对应的,故选项结论错误,符合题意;B选项:数轴上的点与实数是一一对应的,故选项结论错误,符合题意;C选项:如,结果是有理数,故选项结论错误,符合题意;D选项:数轴上任意两点之间还有无数个点,故选项结论正确,不符合题意故选:ABC【考点】考查了实数与实数的运算,解题关键是利用了实数的运算与实数与数轴的对应关系5、ACD【解析】【分析】根据无理数的定义以及性质,对选项逐个判断即可【详解】解:A、无理数包含开方开不尽的数,选项说法错误,符合题意;B、无限不循环小数统称无理数,选项正确,不符合题意;C、带根号的数都是无理数,说法错误,比如,为有理数,符合题意;D、无限不循环小数
9、是无理数,无限循环小数是有理数,选项错误,符合题意;故选ACD【考点】此题考查了无理数的定义以及性质,无限不循环小数是无理数,熟练掌握无理数的有关性质是解题的关键三、填空题1、【解析】【分析】将,代入进行计算,可知数列3个为一次循环,按此规律即可进行求解【详解】解:由题意可知,时,其规律是3个为一次循环,20223=674,故答案为:【考点】本题考查了实数的运算,规律型:数字变化类,把代入进行计算,找到规律是解题的关键2、【解析】【分析】根据给出的新定义分别求出与的值,根据得出关于a的一元一次方程,求解即可【详解】解:,解得,故答案为:【考点】本题考查解一元一次方程、新定义下实数的运算等内容,
10、理解题干中给出的新定义是解题的关键3、【解析】【分析】首先化简,然后再合并同类二次根式即可【详解】解:原式=6-10=6-2=4,故答案为4【考点】此题主要考查了二次根式的加减,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变4、0【解析】【分析】首先根据数轴可以得到ca0b,然后则根据绝对值的性质,以及算术平方根的性质即可化简【详解】解:根据数轴可以得到:ca0b,则c-b0,a+c0,则原式=-a+(a+c)+(b-c)-b=-a+a+c+b-c-b=0故答案是:0【考点】本题考查了二次根式的性质、整式的加减、以
11、及绝对值的性质,解答此题,要弄清5、【解析】【分析】根据分式的运算法则计算即可【详解】解:,故答案为:【考点】此题主要考查分式的运算,解题的关键是熟知其运算法则四、解答题1、A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【解析】【分析】设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解分式方程即可,注意验根.【详解】解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:=80,解得:t=2.5,经检验,t=2.5是原分式方程的解,且符合题意,1.4t=3.5答:A车行驶的时间为3.5小时,B车行驶的时间为2.5小时【考点】本题考核知识点
12、:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.2、2a,当a=0时,原式=2,当a=2时,原式=0【解析】【分析】原式的括号内根据平方差和完全平方公式化简约分,括号外根据分式的除法法则即可化简原式,最后a的负整数解是0,1,2,注意分式的分母不能为零,所以a不能取1【详解】原式=1-a+1=2-a不等式的非负整数解是0,1,2,分式分母不能为零,a不取1当a=0时,原式=2,或当a=2时,原式=0【考点】本题考查了分式的混合运算,平方差和完全平方公式,除法法则等知识,要注意分式的分母不能为零3、解得:y=答:苏老师追上大巴的地点到基地的路程有30公里【考点】本题考查了分式方
13、程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程30(1)-2;(2)4【解析】【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可【详解】解:(1)原式=;(2)原式=4【考点】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键4、见解析【解析】【分析】根据实数的分类,由分数,负有理数,无理数的定义可得答案【详解】解:正分数集合:,21%,;负有理数集合:-0.25,;无理数集合:,2.010010001,【考点】本题考查了有理数以及无理数,利用实数的分类是解题关键5、(1)(2)1【解析】【分析】(1)根据二次根式的性质求得的值,代入代数式求解即可;(2)先化简二次根式里面的分式,再根据(1)中的值,代入求解即可【详解】,(1)当,时,(2) ,原式【考点】本题考查了二次根式的性质,分式的化简,掌握二次根式的性质是解题的关键