收藏 分享(赏)

2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx

上传人:a**** 文档编号:635536 上传时间:2025-12-12 格式:DOCX 页数:25 大小:561.51KB
下载 相关 举报
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第1页
第1页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第2页
第2页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第3页
第3页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第4页
第4页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第5页
第5页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第6页
第6页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第7页
第7页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第8页
第8页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第9页
第9页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第10页
第10页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第11页
第11页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第12页
第12页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第13页
第13页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第14页
第14页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第15页
第15页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第16页
第16页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第17页
第17页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第18页
第18页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第19页
第19页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第20页
第20页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第21页
第21页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第22页
第22页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第23页
第23页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第24页
第24页 / 共25页
2022-2023学年人教版九年级数学上册第二十二章二次函数章节训练试题(解析版).docx_第25页
第25页 / 共25页
亲,该文档总共25页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,抛物线的顶点一定不在()A第一象限B第二象限C第三象限D第四象限2、已知二次函数yax24

2、ax+3与x轴交于A、B两点,与y轴交于点C,若SABC3,则a()ABC1D13、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:-20136-4-6-4下列各选项中,正确的是A这个函数的图象开口向下B这个函数的图象与x轴无交点C这个函数的最小值小于-6D当时,y的值随x值的增大而增大4、若在同一直角坐标系中,作,的图像,则它们()A都关于y轴对称B开口方向相同C都经过原点D互相可以通过平移得到5、关于抛物线:,下列说法正确的是()A它的开口方向向上B它的顶点坐标是C当时,y随x的增大而增大D对称轴是直线6、把函数的图象向右平移1个单位长度,平移后图象的函数解析式为()ABCD7、

3、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于轴对称, 轴,最低点 在轴上,高 ,则右轮廓所在抛物线的解析式为()ABCD8、对于函数的图象,下列说法不正确的是()A开口向下B对称轴是直线C最大值为D与轴不相交9、如图,正方形四个顶点的坐标依次为(1,1),(3,1),(3,3),(1,3),若抛物线y=ax2的图象与正方形有公共顶点,则实数a的取值范围是()ABCD10、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒第卷(非选择题 70分

4、)二、填空题(5小题,每小题4分,共计20分)1、写出一个满足“当时,随增大而减小”的二次函数解析式_2、小亮同学在探究一元二次方程的近似解时,填好了下面的表格:根据以上信息请你确定方程的一个解的范围是_3、如果抛物线y(m1)x2有最低点,那么m的取值范围为_4、已知二次函数y=x24x+k的图象的顶点在x轴下方,则实数k的取值范围是_5、若二次函数yx2+mx在1x2时的最大值为3,那么m的值是_三、解答题(5小题,每小题10分,共计50分)1、抛物线过点,点,顶点为(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;

5、(3)如图2,在(2)的条件下,点是线段上(与点,不重合)的动点,连接,作,边交轴于点,设点的横坐标为,求的取值范围2、受“新冠”疫情的影响,某销售商在网上销售A、B两种型号的“手写板”,获利颇丰已知A型,B型手写板进价、售价和每日销量如表格所示:进价(元/个)售价(元/个)销量(个/日)A型600900200B型8001200400根据市场行情,该销售商对A手写板降价销售,同时对B手写板提高售价,此时发现A手写板每降低5就可多卖1,B手写板每提高5就少卖1,要保持每天销售总量不变,设其中A手写板每天多销售x,每天总获利的利润为y(1)求y、x间的函数关系式并写出x取值范围;(2)要使每天的利

6、润不低于234000元,直接写出x的取值范围;(3)该销售商决定每销售一个B手写板,就捐a元给因“新冠疫情”影响的困难家庭,当时,每天的最大利润为229200元,求a的值3、某水果商店销售一种进价为40元/千克的优质水果,若售价为50元/千克,则一个月可售出500千克;若售价在50元/千克的基础上每涨价1元,则月销售量就减少10千克(1)当售价为55元/千克时,每月销售水果多少千克?(2)当月利润为8750元时,每千克水果售价为多少元?(3)当每千克水果售价为多少元时,获得的月利润最大?4、已知,如图,在RtABC中,C90,A60,AB12cm,点P从点A沿AB以每秒2cm的速度向点B运动,

7、点Q从点C以每秒1cm的速度向点A运动,设点P、Q分别从点A、C同时出发,运动时间为t(秒)(0t6),回答下列问题:(1)直接写出线段AP、AQ的长(含t的代数式表示):AP_,AQ_;(2)设APQ 的面积为S,写出S与t的函数关系式;(3)如图,连接PC,并把PQC沿QC翻折,得到四边形,那么是否存在某一时间t,使四边形为菱形?若存在,求出此时t的值;若不存在,说明理由5、已知抛物线(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点,在抛物线上,若,求m的取值范围-参考答案-一、单选题1、D【解析】【分析】把函数解析式整理成顶点式形式,再根据的取值范围,分

8、类讨论,即可判断顶点所在的象限【详解】解:(1),顶点坐标为当时,顶点在第三象限;当时,顶点在第二象限;当时,顶点在第一象限;综上所述,抛物线的顶点一定不在第四象限,故选:D【考点】本题考察了二次函数解析式的转化,坐标轴上点的性质,熟悉相关性质是解题的关键2、D【解析】【分析】由根与系数的关系求得AB的长度,由抛物线解析式求得点C的坐标,然后根据列出关于的方程,解方程即可【详解】令,则ax24ax+30,x1+x24,x1x2,AB|x1x2|,令x0,y3,OC3,SABCABOC,故选:D【考点】本题考查了二次函数与坐标轴交点的问题,一元二次方程根与系数的关系,熟练掌握一元二次方程跟与系数

9、的关系是解题关键3、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断【详解】解:设二次函数的解析式为,依题意得:,解得:,二次函数的解析式为=,这个函数的图象开口向上,故A选项不符合题意;,这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;,当时,这个函数有最小值,故C选项符合题意;这个函数的图象的顶点坐标为(,),当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键4、A【解析】【分析】根据二次函数的图像和性质逐项分析即

10、可【详解】A.因为,这三个二次函数的图像对称轴为,所以都关于轴对称,故选项A正确,符合题意;B.抛物线,的图象开口向上,抛物线的图象开口向下,故选项B错误,不符合题意;C.抛物线,的图象不经过原点,故选项C错误,不符合题意;D.因为抛物线,的二次项系数不相等,故不能通过平移其它二次函数的图象,故D选项错误,不符合题意;故选A【考点】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键5、C【解析】【分析】根据题目中的抛物线和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题【详解】A选项:,抛物线的开口向下,故A错误;B选项:抛物线的顶点坐标是,故B错误;C选项

11、:对抛物线,当时,y随x增大而增大,故C正确;D选项:抛物线的对称轴是直线,故D错误故选:C【考点】本题考查二次函数的性质,解题的关键是明确题意,利用二次函数的性质解答6、C【解析】【分析】抛物线在平移时开口方向不变,a不变,根据图象平移的口诀“左加右减、上加下减”即可解答【详解】把函数的图象向右平移1个单位长度,平移后图象的函数解析式为,故选:C【考点】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点7、B【解析】【分析】利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称

12、,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式【详解】高CH=1cm,BD=2cm,且B、D关于y轴对称,D点坐标为(1,1),ABx轴,AB=4cm,最低点C在x轴上,AB关于直线CH对称,左边抛物线的顶点C的坐标为(-3,0),右边抛物线的顶点F的坐标为(3,0),设右边抛物线的解析式为y=a(x-3)2,把D(1,1)代入得1=a(1-3)2,解得a=,右边抛物线的解析式为y=(x-3)2,故选:B【考点】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐

13、标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题8、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.9、A【解析】【分析】求出抛物线经过两个特殊点时的a的值即可解决问题【详解】解:当抛物线经过(1,3)时,a=3,当抛物线经过(3,1)时,a=,观察图象可知a3,故选:A【考点】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,解题的关键是熟练掌

14、握基本知识,属于中考常考题型10、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题.二、填空题1、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边, y 随 x 增大而减小,得出a0,于是去a=-1,即可解答【详解】解:设抛物线的解析式为y=a(x-2)2,在抛物线

15、对称轴的右边, y 随 x 增大而减小,a0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2 故答案为:y=-(x-2)2【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质2、【解析】【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.243.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24x3.25之间【详解】根据表格可知,ax2+bx+c=0时,对应的x的值在3.24x3.25之间.故答案为3.24x0,即(-4)2-4k0,k4,故答案为k4.【考点】本题考查了抛物线与x轴的交点问题,由题意得出抛物线与x轴有

16、两个交点是解题的关键.5、4或2【解析】【分析】根据抛物线的对称轴公式,即可建立关于m的等式,解方程求出m的值即可【详解】解:yx2+mx,抛物线开口向下,抛物线的对称轴为x,当1,即m2时,当x1时,函数最大值为3,1m3,解得:m4;当2,即m4时,当x2时,函数最大值为3,4+2m3,解得:m(舍去)当12,即2m4时,当x时,函数最大值为3,3,解得m2或m2(舍去),综上所述,m4或m2,故答案为:4或2【考点】本题考查了二次函数的最值,掌握抛物线的对称轴公式是解题的关键三、解答题1、(1),;(2);(3)【解析】【分析】(1)将的坐标代入解析式,待定系数法求解析式即可,根据顶点在

17、对称轴上,求得对称轴,代入解析式即可的顶点的坐标;(2)设,根据是以为底的等腰三角形,根据,求得点的坐标,进而求得解析式,联立二次函数解析式,解方程组即可求得点的坐标;(3)根据题意,可得,设,根据相似三角形的性质,线段成比例,可得,根据配方法可得的最大值,根据点是线段上(与点,不重合)的动点,可得的最小值,即可求得的范围【详解】(1)抛物线过点,点,解得,代入,解得:,顶点,(2)设, ,,是以为底的等腰三角形,即解得设直线的解析式为解得直线的解析式为联立解得:,(3)点的横坐标为,设,则,是以为底的等腰三角形,即整理得当点与点重合时,与点重合,由题意,点是线段上(与点,不重合)的动点,的取

18、值范围为:【考点】本题考查了二次函数综合,相似三角形的性质与判定,待定系数法求一次函数解析式,待定系数法求解析式,等腰三角形的性质,二次函数的性质,综合运用以上知识是解题的关键2、(1)(),且x为整数;(2),且x为整数;(3)a=30【解析】【分析】(1)根据题意列函数关系式和不等式组,于是得到结论;(2)根据题意列方程和不等式,于是得到结论;(3)根据题意列函数关系式,然后根据二次函数的性质即可得到结论【详解】解:(1)由题意得,解得,故的取值范围为且为整数;(2)的取值范围为理由如下:,当时,解得:或要使,得;,;(3)设捐款后每天的利润为元,则,对称轴为,抛物线开口向下,当时,随的增

19、大而增大,当时,最大,解得【考点】本题考查了二次函数的应用,一元一次不等式的应用,列函数关系式等等,最大销售利润的问题常利用函数的增减性来解答3、(1)450千克;(2)当月销售利润为元时,每千克水果售价为元或元;(3)当该优质水果每千克售价为元时,获得的月利润最大【解析】【分析】(1)根据销售量的规律:500减去减少的数量即可求出答案;(2)设每千克水果售价为元,根据题意列方程解答即可;(3)设月销售利润为元,每千克水果售价为元,根据题意列函数关系式,再根据顶点式函数关系式的性质解答即可【详解】解:当售价为元/千克时,每月销售量为千克设每千克水果售价为元,由题意,得即整理,得配方,得解得当月

20、销售利润为元时,每千克水果售价为元或元;设月销售利润为元,每千克水果售价为元,由题意,得即配方,得,当时,有最大值,当该优质水果每千克售价为元时,获得的月利润最大【考点】此题考查一元二次方程的实际应用,顶点式二次函数的性质,正确理解题意,根据题意对应的列方程或是函数关系式进行解答,并正确计算4、(1)2t,;(2);(3)存在,t4时,四边形是菱形【解析】【分析】(1)根据A60,AB12cm,得出AC的长,进而得出AP2t,(2)过点P作PHAC于H由AP2t,AHt,得出,从而求得S与t的函数关系式;(3)过点P作PMAC于M,根据菱形的性质得PQPC,则可得出求得t即可【详解】解:(1)

21、在RtABC中,C90,A60,AB12cm,AC6,由题意知:AP2t,故答案为: (2)如图过点P作PHAC于HC90,A60,AB12cm,B30,HPA30,AP2t,AHt, (3)当t4时,四边形PQPC是菱形,理由如下:证明:如图过点P作PMAC于M,CQt,由(2)可知,AMAPt,QCAM, 由对折可得: 当PCPQ时,四边形是菱形, CMMQAQAC2, 当t4时,四边形是菱形【考点】本题考查的是含的直角三角形的性质,勾股定理的应用,列二次函数关系式,菱形的判定与性质,掌握以上知识是解题的关键5、(1);(2)或;(3)当a0时,;当a0时,或【解析】【分析】(1)将二次函

22、数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q关于对称轴的对称点,再结合二次函数的图象与性质,即可得到的取值范围【详解】(1),其对称轴为:(2)由(1)知抛物线的顶点坐标为:,抛物线顶点在轴上,解得:或,当时,其解析式为:,当时,其解析式为:,综上,二次函数解析式为:或(3)由(1)知,抛物线的对称轴为,关于的对称点为,当a0时,若,则-1m3;当a0时,若,则m-1或m3.【考点】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1