1、人教版九年级数学上册第二十二章二次函数定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形边长为4,、分别是、上的点,且设、两点间的距离为,四边形的面积为,则与的函数图象可能是()ABCD
2、2、把函数的图象向右平移1个单位长度,平移后图象的函数解析式为()ABCD3、根据下列表格的对应值:x6.176.186.196.20ax2bxc0.020.010.010.04判断方程ax2bxc0(a0,a,b,c为常数)一个解x的取值范围是()A6x6.17B6.17x6.18C6.18x6.19D6.19x6.204、若在同一直角坐标系中,作,的图像,则它们()A都关于y轴对称B开口方向相同C都经过原点D互相可以通过平移得到5、已知学校航模组设计制作的火箭升空高度h(m)与飞行时间t(s)满足函数表达式ht224t1,则下列说法中正确的是()A点火后1s和点火后3s的升空高度相同B点火
3、后24s火箭落于地面C火箭升空的最大高度为145mD点火后10s的升空高度为139m6、如果y=(m-2)x是关于x的二次函数,则m=()A-1B2C-1或2Dm不存在7、在同一平面直角坐标系中,二次函数与一次函数的图象如图所示,则二次函数的图象可能是()ABCD8、关于二次函数,下列说法正确的是()A图象的对称轴在轴的右侧B图象与轴的交点坐标为C图象与轴的交点坐标为和D的最小值为99、已知二次函数的图象上有两点A(x1,2023)和B(x2,2023),则当时,二次函数的值是()A2020B2021C2022D202310、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时
4、y随x的增大而减小,则a的取值范围是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若抛物线 的图像与轴有交点,那么的取值范围是_.2、若一元二次方程(b,c为常数)的两根满足,则符合条件的一个方程为_3、请写出一个开口向下,并且与轴交于点的抛物线的解析式_4、写出一个满足“当时,随增大而减小”的二次函数解析式_5、某快餐店销售A、B两种快餐,每份利润分别为12元、8元,每天卖出份数分别为40份、80份该店为了增加利润,准备降低每份A种快餐的利润,同时提高每份B种快餐的利润售卖时发现,在一定范围内,每份A种快餐利润每降1元可多卖2份,每份B种快餐利润每提高1
5、元就少卖2份如果这两种快餐每天销售总份数不变,那么这两种快餐一天的总利润最多是_元三、解答题(5小题,每小题10分,共计50分)1、根据下列条件,求二次函数的解析式(1)图象经过(0,1),(1,2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);2、抛物线过点,点,顶点为(1)求抛物线的表达式及点的坐标;(2)如图1,点在抛物线上,连接并延长交轴于点,连接,若是以为底的等腰三角形,求点的坐标;(3)如图2,在(2)的条件下,点是线段上(与点,不重合)的动点,连接,作,边交轴于点,设点的横坐标为,求的取值范围3、顶点为D的抛物线yx2+bx+c交x轴于A、B(3,0),交y轴
6、于点C,直线yx+m经过点C,交x轴于E(4,0)(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线yx+m于G,交抛物线于H,连接CH,将CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标4、某种商品每件的进价为10元,若每件按20元的价格销售,则每月能卖出360件;若每件按30元的价格销售,则每月能卖出60件假定每月的销售件数y是销售价格x(单位:元)的一次函数
7、(1)求y关于x的一次函数解析式;(2)当销售价格定为多少元时,每月获得的利润最大?并求此最大利润5、如图,已知二次函数与轴交于、两点(点位于点的左侧),与轴交于点,已知的面积是6(1)求的值;(2)在抛物线上是否存在一点,使存在请求出坐标,若不存在请说明理由-参考答案-一、单选题1、A【解析】【分析】本题考查了动点的函数图象,先判定图中的四个小直角三角形全等,再用大正方形的面积减去四个直角三角形的面积,得函数y的表达式,结合选项的图象可得答案【详解】解:正方形ABCD边长为4,AE=BF=CG=DHAH=BE=CF=DG,A=B=C=DAEHBFECGFDHGy=44-x(4-x)4=16-
8、8x+2x2=2(x-2)2+8y是x的二次函数,函数的顶点坐标为(2,8),开口向上,从4个选项来看,开口向上的只有A和B,C和D图象开口向下,不符合题意;但是B的顶点在x轴上,故B不符合题意,只有A符合题意故选:A【考点】本题考查了动点问题的函数图象,正确地写出函数解析式并数形结合分析是解题的关键2、C【解析】【分析】抛物线在平移时开口方向不变,a不变,根据图象平移的口诀“左加右减、上加下减”即可解答【详解】把函数的图象向右平移1个单位长度,平移后图象的函数解析式为,故选:C【考点】本题考查了二次函数图象与几何变换,解答的重点在于熟练掌握图象平移时函数表达式的变化特点3、C【解析】【分析】
9、根据在6.18和6.19之间有一个值能使ax2+bx+c的值为0,于是可判断方程ax2+bx+c=0一个解x的范围【详解】解:由 ,得 时 随 的增大而增大,得 时, ,时, ,的一个解x的取值范围是 ,故选:C【考点】本题考查了估算一元二次方程的近似解,解答此题的关键是利用函数的增减性4、A【解析】【分析】根据二次函数的图像和性质逐项分析即可【详解】A.因为,这三个二次函数的图像对称轴为,所以都关于轴对称,故选项A正确,符合题意;B.抛物线,的图象开口向上,抛物线的图象开口向下,故选项B错误,不符合题意;C.抛物线,的图象不经过原点,故选项C错误,不符合题意;D.因为抛物线,的二次项系数不相
10、等,故不能通过平移其它二次函数的图象,故D选项错误,不符合题意;故选A【考点】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键5、C【解析】【分析】分别求出t=1、3、24、10时h的值可判断A、B、D三个选项,将解析式配方成顶点式可判断C选项【详解】解:A、当t=1时,h=24;当t=3时,h=64;所以点火后1s和点火后3s的升空高度不相同,此选项错误;B、当t=24时,h=10,所以点火后24s火箭离地面的高度为1m,此选项错误;C、由ht224t1=(t-12)2+145知火箭升空的最大高度为145m,此选项正确;D、当t=10时,h=141m,此选项错误;故选:C
11、【考点】本题主要考查二次函数的应用,解题的关键是熟练掌握二次函数的性质6、A【解析】【分析】根据二次函数的定义知m2-m=2,且m-2,解出即可.【详解】依题意,解得m=-1,故选:A.【考点】此题主要考查二次函数的定义,需要注意二次项系数不为零.7、D【解析】【分析】根据二次函数与一次函数的图象可知,从而判断出二次函数的图象【详解】解:二次函数的图象开口向上,次函数的图象经过一、三、四象限,对于二次函数的图象,开口向上,排除A、B选项;,对称轴,D选项符合题意;故选:D【考点】本题考查了一次函数的图象以及二次函数的图象,根据二次函数的图象和一次函数图象经过的象限,找出,是解题的关键8、D【解
12、析】【分析】先把抛物线的解析式化成顶点式,再根据二次函数的性质逐个判断即可【详解】抛物线的对称轴为直线:x=-1,在y轴的左侧,故选项A错误;令x=0,则y=-8,所以图象与轴的交点坐标为,故选项B错误;令y=0,则,解得x1=2,x2=-4,图象与轴的交点坐标为和,故选项C错误;,a=10,所以函数有最小值-9,故选项D正确故选:D【考点】本题考查了二次函数的图象、二次函数的性质和二次函数的最值,能熟记二次函数的性质是解此题的关键9、C【解析】【分析】根据A、B两点纵坐标一样,且都在函数图像上,得出x1、x2是方程2020x2+2021x+2022=2023的两个根,由韦达定理得到,代入解析
13、式即可得解【详解】解:二次函数的图象上有两点A(,2023)和B(,2023),、是方程的两个根,当时,有:,故选C【考点】本题考查了二次函数与一元二次方程的关系、韦达定理;关键在于能发现题干所给条件的特点,会运用韦达定理10、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键二、填空题1、【解
14、析】【分析】由抛物线 的图像与轴有交点可知,从而可求得的取值范围【详解】解:抛物线 的图像与轴有交点令,有,即该方程有实数根故答案是:【考点】本题考查了二次函数与轴的交点情况与一元二次方程分的情况的关系、解一元一次不等式,能由已知条件列出关于的不等式是解题的关键2、(答案不唯一)【解析】【分析】设与交点为,根据题意关于y轴对称和二次函数的对称性,可找到的值(只需满足互为相反数且满足即可)即可写出一个符合条件的方程【详解】设与交点为,根据题意则的对称轴为故设则方程为:故答案为:【考点】本题考查了二次函数的对称性,二次函数与一元二次方程的关系,熟悉二次函数的性质和找到两根的对称性类比二次函数的对称
15、性是解题的关键3、【解析】【分析】根据二次函数的性质,抛物线开口向下a0,然后写出即可【详解】解:抛物线解析式为(答案不唯一)故答案为:(答案不唯一)【考点】本题考查了二次函数的性质,开放型题目,主要利用了抛物线的开口方向与二次项系数a的关系4、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边, y 随 x 增大而减小,得出a0,于是去a=-1,即可解答【详解】解:设抛物线的解析式为y=a(x-2)2,在抛物线对称轴的右边, y 随 x 增大而减小,a0,符合上述条件的二次函数均可,可取a=-1,则y=-(x
16、-2)2 故答案为:y=-(x-2)2【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质5、1264【解析】【分析】根据题意,总利润=快餐的总利润快餐的总利润,而每种快餐的利润=单件利润对应总数量,分别对两份快餐前后利润和数量分析,代入求解即可【详解】解:设种快餐的总利润为,种快餐的总利润为,两种快餐的总利润为,设快餐的份数为份,则B种快餐的份数为份据题意: 当的时候,W取到最大值1264,故最大利润为1264元故答案为:1264【考点】本题考查的是二次函数的应用,正确理解题意、通过具体问题找到变化前后的关系是解题关键点三、解答题1、(1)y4x27x+1;(2)y2
17、(x2)2+3【解析】【分析】(1)先设出抛物线的解析式为yax2+bx+c,再将点(0,1),(1,2),(2,3)代入解析式中,即可求得抛物线的解析式;(2)由于已知抛物线的顶点坐标,则可设顶点式ya(x2)23,然后把(3,1)代入求出a的值即可【详解】解:(1)设出抛物线的解析式为yax2+bx+c,将(0,1),(1,2),(2,3)代入解析式,得:,解得:,抛物线解析式为:y4x27x+1;(2)设抛物线解析式为ya(x2)2+3,把(3,1)代入得:a(32)2+31,解得a2,所以抛物线解析式为y2(x2)2+3【考点】本题考查了待定系数法求二次函数的解析式:一般地,当已知抛物
18、线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解2、(1),;(2);(3)【解析】【分析】(1)将的坐标代入解析式,待定系数法求解析式即可,根据顶点在对称轴上,求得对称轴,代入解析式即可的顶点的坐标;(2)设,根据是以为底的等腰三角形,根据,求得点的坐标,进而求得解析式,联立二次函数解析式,解方程组即可求得点的坐标;(3)根据题意,可得,设,根据相似三角形的性质,线段成比例,可得,根据配方法可得的最大值,根据点是线段上(与点,不重合)的动点,可得的最小值,即可
19、求得的范围【详解】(1)抛物线过点,点,解得,代入,解得:,顶点,(2)设, ,,是以为底的等腰三角形,即解得设直线的解析式为解得直线的解析式为联立解得:,(3)点的横坐标为,设,则,是以为底的等腰三角形,即整理得当点与点重合时,与点重合,由题意,点是线段上(与点,不重合)的动点,的取值范围为:【考点】本题考查了二次函数综合,相似三角形的性质与判定,待定系数法求一次函数解析式,待定系数法求解析式,等腰三角形的性质,二次函数的性质,综合运用以上知识是解题的关键3、 (1)yx2+2x+3;(2)S(x)2+;当x时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).【解析】【分
20、析】(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CGHG,列等式求解即可【详解】(1)将点E代入直线解析式中,04+m,解得m3,解析式为yx+3,C(0,3),B(3,0),则有,解得,抛物线的解析式为:yx2+2x+3;(2)yx2+2x+3(x1)2+4,D(1,4),设直线BD的解析式为ykx+b,代入点B、D,解得,直
21、线BD的解析式为y2x+6,则点M的坐标为(x,2x+6),S(3+62x)x(x)2+,当x时,S有最大值,最大值为(3)存在,如图所示,设点P的坐标为(t,0),则点G(t,t+3),H(t,t2+2t+3),HG|t2+2t+3(t+3)|t2t|CGt,CGH沿GH翻折,G的对应点为点F,F落在y轴上,而HGy轴,HGCF,HGHF,CGCF,GHCCHF,FCHCHG,FCHFHC,GCHGHC,CGHG,|t2t|t,当t2tt时,解得t10(舍),t24,此时点P(4,0)当t2tt时,解得t10(舍),t2,此时点P(,0)综上,点P的坐标为(4,0)或(,0)【考点】此题考查
22、了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CGHG为解题关键4、 (1)(2)价格为21元时,才能使每月获得最大利润,最大利润为3630元【解析】【分析】(1)设,把,和,代入求出k、b的值,从而得出答案;(2)根据总利润=每件利润每月销售量列出函数解析式,配方成顶点式,利用二次函数的性质求解可得答案(1)解:设,把,和,代入可得,解得,则;(2)解:每月获得利润 ,当时,P有最大值,最大值为3630答:当价格为21元时,才能使每月获得最大利润,最大利润为3630元【考点】本题主要考查了一次函数解析式的求法和二次函数的应用,解题的关键是理解题意找到其中蕴含的相等关系,并据此得出函数解析式及二次函数的性质,然后再利用二次函数求最值5、(1);(2)存在,点的坐标为或或【解析】【分析】(1)根据求出A,B,C的坐标,再由的面积是6得到关于a的方程即可求解;(2)根据得到点的纵坐标为3,分别代入解析式即可求解【详解】(1),令,则,令,即解得,由图象知:,解得:,(舍去);(2),.点的纵坐标为3,把代入得,解得或,把代入得,解得或,点的坐标为或或【考点】此题主要考查二次函数的图像与性质,解题的关键是熟知待定系数法的应用