收藏 分享(赏)

2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx

上传人:a**** 文档编号:635521 上传时间:2025-12-12 格式:DOCX 页数:24 大小:518.22KB
下载 相关 举报
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第1页
第1页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第2页
第2页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第3页
第3页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第4页
第4页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第5页
第5页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第6页
第6页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第7页
第7页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第8页
第8页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第9页
第9页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第10页
第10页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第11页
第11页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第12页
第12页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第13页
第13页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第14页
第14页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第15页
第15页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第16页
第16页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第17页
第17页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第18页
第18页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第19页
第19页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第20页
第20页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第21页
第21页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第22页
第22页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第23页
第23页 / 共24页
2022-2023学年人教版九年级数学上册第二十二章二次函数专题训练试卷(含答案详解).docx_第24页
第24页 / 共24页
亲,该文档总共24页,全部预览完了,如果喜欢就下载吧!
资源描述

1、人教版九年级数学上册第二十二章二次函数专题训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、抛物线的对称轴为直线若关于的一元二次方程(为实数)在的范围内有实数根,则的取值范围是()ABCD2、已知二次函

2、数的图象交轴于两点若其图象上有且只有三点满足,则的值是()A1BC2D43、如图,抛物线y= a1x2与抛物线y=a2x2 +bx的交点P在第三象限,过点P作x轴的平行线,与两条抛物线分别交于点M、N,若,则的值是( )A3B2CD4、若关于x的二次函数yax2+bx的图象经过定点(1,1),且当x1时y随x的增大而减小,则a的取值范围是()ABCD5、下列关于二次函数的说法,正确的是()A对称轴是直线B当时有最小值C顶点坐标是D当时,y随x的增大而减少6、在同一平面直角坐标系内,二次函数与一次函数的图象可能是()ABCD7、抛物线经过点、,且与y轴交于点,则当时,y的值为()ABCD58、若

3、在同一直角坐标系中,作,的图像,则它们()A都关于y轴对称B开口方向相同C都经过原点D互相可以通过平移得到9、已知二次函数的图像如图所示,有下列结论:;0;不等式0的解集为13,正确的结论个数是()A1B2C3D410、向空中发射一枚炮弹,第秒时的高度为米,且高度与时间的关系为,若此炮弹在第秒与第秒时的高度相等,则在下列时间中炮弹所在高度最高的是( )A第秒B第秒C第秒D第秒第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将抛物线向上平移2个单位后,得到的新抛物线与y轴交点的坐标为_2、在平面直角坐标系中,抛物线yx2的图象如图所示已知A点坐标为(1,1),过点A作AA

4、1x轴交抛物线于点A1,过点A1作A1A2OA交抛物线于点A2,过点A2作A2A3x轴交抛物线于点A3,过点A3作A3A4OA交抛物线于点A4,依次进行下去,则点A2021的坐标为_3、我们用符号表示不大于的最大整数例如:,那么:(1)当时,的取值范围是_;(2)当时,函数的图象始终在函数的图象下方则实数的范围是_4、已知二次函数,如果随的增大而增大,那么的取值范围是_5、如图所示四个二次函数的图象中,分别对应的是yax2;ybx2;ycx2;ydx2则a、b、c、d的大小关系为_三、解答题(5小题,每小题10分,共计50分)1、某工艺厂设计了一款成本为每件元的产品,并投放市场进行试销,经过调

5、查,发现每天的销售数量件与销售单价(元)存在一次函数关系(1)要使每天销售利润达到元,销售单价应定为每件多少元?(2)销售单价定为多少时,该厂每天获取的利润最大?最大利润是多少?2、若二次函数图像经过,两点,求、的值.3、 “扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量(件)与销售单价(元)之间存在一次函数关系,如图所示.(1)求与之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润

6、不低于3600元,试确定该漆器笔筒销售单价的范围.4、已知抛物线(1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x轴上,求其解析式;(3)设点,在抛物线上,若,求m的取值范围5、已知抛物线经过点(1,2),(2,13)(1)求a,b的值;(2)若(5,),(m,)是抛物线上不同的两点,且,求m的值-参考答案-一、单选题1、A【解析】【分析】根据给出的对称轴求出函数解析式为,将一元二次方程的实数根可以看做与函数的有交点,再由的范围确定的取值范围即可求解;【详解】的对称轴为直线,一元二次方程的实数根可以看做与函数的有交点,方程在的范围内有实数根,当时,当时,函数在时有最小值2,故选A【考点】本

7、题考查二次函数的图象及性质;能够将方程的实数根问题转化为二次函数与直线的交点问题,借助数形结合解题是关键2、C【解析】【分析】由题意易得点的纵坐标相等,进而可得其中有一个点是抛物线的顶点,然后问题可求解【详解】解:假设点A在点B的左侧,二次函数的图象交轴于两点,令时,则有,解得:,图象上有且只有三点满足,点的纵坐标的绝对值相等,如图所示:,点,;故选C【考点】本题主要考查二次函数的综合,熟练掌握二次函数的图象与性质是解题的关键3、B【解析】【分析】设 ,则由抛物线的对称性可知,从而可得,再由即可得到,再根据即可得到【详解】解:设 ,由抛物线的对称性可知,即,又,即,或(舍去),故选B【考点】本

8、题主要考查了二次函数的对称性,二次函数上点的坐标特征,解题的关键在于能够求出4、D【解析】【分析】根据题意开口向上,且对称轴1,ab1,即可得到1,从而求解【详解】由二次函数yax2+bx可知抛物线过原点,抛物线定点(1,1),且当x-1时,y随x的增大而减小,抛物线开口向上,且对称轴1,ab1,a0,b1a,1,故选:D【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键5、B【解析】【分析】根据二次函数的性质对各选项分析判断后利用排除法求解【详解】解:由二次函数可知对称轴是直线,故选项A错误,不符合题意;由二次函数可知开口向上,当时

9、有最小值,故选项B正确,符合题意;由二次函数可知顶点坐标为(3,-5),故选项C错误,不符合题意;由二次函数可知顶点坐标为(3,-5),对称轴是直线,当x3时,y随x的增大而减小,故选项D错误,不符合题意;故选:B【考点】本题考查了二次函数的性质,主要利用了开口方向,顶点坐标,对称轴以及二次函数的增减性6、C【解析】【分析】根据一次函数和二次函数的图象和性质,分别判断a,b的符号,利用排除法即可解答【详解】解:A、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;B、由一次函数图象可知,a0,b0,由二次函数图象可知,a0,b0,不符合题意;C、由一次函数图象可知,a

10、0,b0,由二次函数图象可知,a0,b0,符合题意;D、由一次函数图象可知,a0,b=0,由二次函数图象可知,a0,b0,不符合题意;故选:C【考点】本题考查二次函数的图象和一次函数的图象,解题的关键是明确一次函数和二次函数的性质7、A【解析】【分析】先利用待定系数法求出抛物线解析式,再求函数值即可【详解】解:抛物线经过点、,且与y轴交于点,解方程组得,抛物线解析式为,当时,故选择A【考点】本题考查待定系数法求抛物线解析式,和函数值,掌握系数法求抛物线解析式方法和函数值求法是解题关键8、A【解析】【分析】根据二次函数的图像和性质逐项分析即可【详解】A.因为,这三个二次函数的图像对称轴为,所以都

11、关于轴对称,故选项A正确,符合题意;B.抛物线,的图象开口向上,抛物线的图象开口向下,故选项B错误,不符合题意;C.抛物线,的图象不经过原点,故选项C错误,不符合题意;D.因为抛物线,的二次项系数不相等,故不能通过平移其它二次函数的图象,故D选项错误,不符合题意;故选A【考点】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键9、A【解析】【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定【详解】解:抛物线的开口向上,a0,故正确;抛物线与x轴没有交点0,故错误由抛物线可知图象

12、过(1,1),且过点(3,3)8a+2b=24a+b=1,故错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点0可化为,根据图象,解得:1x3故错误故选A【考点】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键10、C【解析】【分析】根据二次函数图像的对称性,求出对称轴,即可得到答案.【详解】解:根据题意,炮弹在第秒与第秒时的高度相等,抛物线的对称轴为:秒,第12秒距离对称轴最近,上述时间中,第12秒时炮弹高度最高;故选:C.【考点】本题考查了二次函数的性质和对称性,解题的关键是掌握二次函数的对称性进行解题

13、.二、填空题1、(0,3)【解析】【分析】根据二次函数的平移规律得出新抛物线的解析式,再令x=0即可得出答案;【详解】解:抛物线向上平移2个单位得到新抛物线的解析式为,当x=0,则y=3,得到的新抛物线图象与y轴的交点坐标为:(0,3)故答案为:(0,3)【考点】此题主要考查了主要考查了二次函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减并用规律求函数解析式会利用方程求抛物线与坐标轴的交点2、(-1011,10112)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A

14、4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2021的坐标【详解】解:A点坐标为(1,1),直线OA为y=x,A1(-1,1),A1A2OA,直线A1A2为y=x+2,解得或,A2(2,4),A3(-2,4),A3A4OA,直线A3A4为y=x+6,解,得或,A4(3,9),A5(-3,9),A2021(-1011,10112),故答案为(-1011,10112)【考点】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键3、 或【解析】【分析】(1)首先利用的整数定义根据不等式确定其整数取值范围,继而利用取整函数

15、定义精确求解x取值范围(2)本题可根据题意构造新函数,采取自变量分类讨论的方式判别新函数的正负,继而根据函数性质反求参数【详解】(1)因为表示整数,故当时,的可能取值为0,1,2当取0时, ;当取1时, ;当=2时,故综上当时,x的取值范围为:(2)令,由题意可知:,当时,=,在该区间函数单调递增,故当时, ,得当时,=0, 不符合题意当时,=1, ,在该区间内函数单调递减,故当取值趋近于2时,得,当时,因为 ,故,符合题意故综上:或【考点】本题考查函数的新定义取整函数,需要有较强的题意理解能力,分类讨论方法在此类型题目极为常见,根据不同区间函数单调性求解参数为常规题型,需要利用转化思想将非常

16、规题型转化为常见题型4、【解析】【分析】由于抛物线y=2x2-1的对称轴是y轴,所以当x0时,y随x的增大而增大【详解】解:抛物线y=2x2-1中a=20,二次函数图象开口向上,且对称轴是y轴,当x0时,y随x的增大而增大故答案为:【考点】本题考查了抛物线y=ax2+b的性质:图象是一条抛物线;开口方向与a有关;对称轴是y轴;顶点(0,b)5、abdc【解析】【分析】设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小【详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),所以,abdc【考点】本题考查了二次函数的图象,采用了取特

17、殊点的方法,比较字母系数的大小三、解答题1、(1)要使每天销售利润达到元,销售单价应定为每件元或元;(2)销售单价定为每件元时,该厂每天获取的利润最大,最大利润是元【解析】【分析】(1)根据利润(售价-进价)销量,列方程即可解答(2)设每天的销售利润为元,根据题意可以列出利润与销售单价之间的函数关系式,然后根据二次函数的性质,即可解答【详解】(1)由题意得解得:或答:要使每天销售利润达到元,销售单价应定为每件元或元.(2)设每天的销售利润为元,由题意得当时,即销售单价为元时,取最大值答:销售单价定为每件元时,该厂每天获取的利润最大,最大利润是元【考点】本题考查了二次函数的应用,解题关键是明确题

18、意,结合二次函数的性质解答2、b=-3,c=-4.【解析】【分析】将,代入中,求解二元一次方程组即可解题.【详解】解:将,代入中得, 解得: b=-3,c=-4.【考点】本题考查了含参数的二次函数的求解,属于简单题,熟悉求解二元一次方程组的方法是解题关键.3、(1);(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.【解析】【分析】(1)可用待定系数法来确定y与x之间的函数关系式;(2)根据利润=销售量单件的利润,然后将(1)中的函数式代入其中,求出利润和销售单件之间的关系式,然后根据其性质来判断出最大利润;(3)首先得出w与x的函数关系式,进而利用所获利润等于36

19、00元时,对应x的值,根据增减性,求出x的取值范围【详解】(1)由题意得: 故y与x之间的函数关系式为:y=-10x+700,(2)由题意,得-10x+700240,解得x46,设利润为w=(x-30)y=(x-30)(-10x+700),w=-10x2+1000x-21000=-10(x-50)2+4000,-100,x50时,w随x的增大而增大,x=46时,w大=-10(46-50)2+4000=3840,答:当销售单价为46元时,每天获取的利润最大,最大利润是3840元;(3)w-150=-10x2+1000x-21000-150=3600,-10(x-50)2=-250,x-50=5,

20、x1=55,x2=45,如图所示,由图象得:当45x55时,捐款后每天剩余利润不低于3600元【考点】此题主要考查了二次函数的应用、一次函数的应用和一元二次方程的应用,利用函数增减性得出最值是解题关键,能从实际问题中抽象出二次函数模型是解答本题的重点和难点4、(1);(2)或;(3)当a0时,;当a0时,或【解析】【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q关于对称轴的对称点,再结合二次函数的图象与性质,即可得到的取值范围【详解】(1),其对称轴

21、为:(2)由(1)知抛物线的顶点坐标为:,抛物线顶点在轴上,解得:或,当时,其解析式为:,当时,其解析式为:,综上,二次函数解析式为:或(3)由(1)知,抛物线的对称轴为,关于的对称点为,当a0时,若,则-1m3;当a0时,若,则m-1或m3.【考点】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键5、(1);(2)【解析】【分析】(1)将点的坐标分别代入解析式即可求得a,b的值;(2)将(5,),(m,)代入解析式,联立即可求得m的值.【详解】(1)抛物线经过点(1,-2),(-2,13),解得,a的值为1,b的值为-4;(2)(5,),(m,)是抛物线上不同的两点,解得或(舍去)m的值为-1.【考点】本题主要考查二次函数性质,用待定系数法求二次函数,正确解出方程组求得未知数是解题的关键.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 语文

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1