1、京改版八年级数学上册第十章分式定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果关于x的方程有正整数解,且关于x的不等式组的解集为,则符合条件的所有整数a之和为()A4B3C2D12、若关于的不
2、等式组有解,且使关于的分式方程的解为非负数则满足条件的所有整数的和为()A-9B-8C-5D-43、解分式方程时,去分母化为一元一次方程,正确的是()Ax+23Bx23Cx23(2x1)Dx+23(2x1)4、已知 ,则 的值是()ABC2D-25、若分式的值为零,则的值为()A-3B-1C3D6、如果,那么代数式的值是()ABC1D37、计算的结果是( )ABCD8、的结果是()ABCD9、方程的解是()ABCD10、已知,用a表示c的代数式为()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知分式化简后的结果是一个整式,则常数=_2、方程的解为_3、计算
3、:()01_4、计算:_5、观察下列各式:,请利用你观察所得的结论,化简代数式(且n为整数),其结果是_三、解答题(5小题,每小题10分,共计50分)1、阅读下列材料:小铭和小雨在学习过程中有如下一段对话:小铭:“我知道一般当mn时,m2nmn2可是我见到有这样一个神奇的等式:()2()2(其中a,b为任意实数,且b0)你相信它成立吗?”小雨:“我可以先给a,b取几组特殊值验证一下看看”完成下列任务:(1)请选择两组你喜欢的、合适的a,b的值,分别代入阅读材料中的等式,写出代入后得到的具体等式并验证它们是否成立;当a2,b3时,等式_(填写“成立”或“不成立”);当a3,b5时,等式_(填写“
4、成立”或“不成立”)(2)对于任意实数a,b(b0),通过计算说明()2()2是否成立2、先化简,再求值:(x1+),其中x为满足3x的整数解3、已知,求的值.4、北京冬奥会的吉祥物冰墩墩深受大家喜爱,出现“一墩难求”的现象负责生产冰墩墩硅胶外壳的公司收到了一笔48万个的订单,若按原计划生产的日产量计算,则完成这笔订单的生产时间将超过一年扩大生产规模后,日产量可提高到原来的30倍,生产时间能减少464天(1)扩大生产规模后每天生产多少个冰墩墩硅胶外壳?(2)该公司通过增加模具的方式提高日产量,本来只有两套模具,每套模具每天平均生产500个冰墩墩硅胶外壳,为达到扩大生产规模后的日产量,至少需要增
5、加多少套模具?5、计算:(1)()3()2(2)()-参考答案-一、单选题1、C【解析】【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正整数求出的范围,再由不等式组的解集确定出的范围,进而求出的具体范围,确定出整数的值,求出之和即可【详解】解:分式方程去分母得:,解得:,由分式方程的解为正整数,得到,即,不等式,整理得:,由不等式的解集为,得到,即,的范围是,且是整数,的值为,0, 2,3,4,把代入,得:,即,不符合题意;把代入,得:,即,符合题意;把代入,得:,即,不符合题意;把代入,得:,即,不符合题意;把代入,得:,即,符合题意;把代入,得:,即,不符合题意
6、;符合条件的整数取值为,3,之和为2,故选:C【考点】本题考查了解一元一次不等式组,以及解分式方程,熟练掌握运算法则是解本题的关键2、A【解析】【分析】先求不等式组的解集,根据不等式组有解,可得,然后再解出分式方程,再根据分式方程的解为非负数,可得,即可求解【详解】解:,解不等式,得:,解不等式,得:,不等式组有解,解得:,去分母得:,分式方程的解为非负数,且不等于2,即且,且满足条件的所有整数有-5、-4、-3、-2、0、1、2、3,满足条件的所有整数的和故选:B【考点】本题主要考查了解一元一次不等式组和分式方程,熟练掌握解一元一次不等式组和分式方程的基本步骤是解题的关键3、C【解析】【分析
7、】最简公分母是2x1,方程两边都乘以(2x1),即可把分式方程便可转化成一元一次方程【详解】方程两边都乘以(2x1),得x23(2x1),故选C【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根4、C【解析】【分析】将条件变形为,再代入求值即可得解【详解】解:,故选:C【考点】本题主要考查了分式的化简,将条件变形为是解答本题的关键5、A【解析】【分析】根据分式的值为零的条件即可求出答案【详解】解:由题意可知:解得:x=-3,故选:A【考点】本题考查分式的值,解题的关键是熟练运用分式的值为零的条件6、解得:a6且a故选:A【考点
8、】此题考查了分式方程的解,始终注意分母不为0这个条件2C【解析】【分析】先将等式变形可得,然后根据分式各个运算法则化简,最后利用整体代入法求值即可【详解】解:=1故选C【考点】此题考查的是分式的化简求值题,掌握分式的运算法则是解决此题的关键7、A【解析】【分析】直接利用分式的加减运算法则计算得出答案【详解】原式,故选:A【考点】本题考查分式的加减运算法则,比较基础8、B【解析】【分析】首先把每一项因式分解,然后根据分式的混合运算法则求解即可【详解】=故选:B【考点】此题考查了分式的混合运算,解题的关键是先对每一项因式分解,然后再根据分式的混合运算法则求解9、D【解析】【分析】根据题意可知,本题
9、考察分式方程及其解法,根据方程解的意义,运用去分母,移项的方法,进行求解【详解】解:方程可化简为经检验是原方程的解故选D【考点】本题考察了分式方程及其解法,熟练掌握解分式方程的步骤是解决此类问题的关键10、D【解析】【分析】将代入消去b,进行化简即可得到结果【详解】解:把代入,得,故选D【考点】本题考查了分式的混合运算,列代数式熟练掌握运算法则是解题的关键二、填空题1、【解析】【分析】依题意可知,分式化简后是一个整式,说明分式可以由公约数“x+1”,即分式的分子部分可以化成的形式,将这个分子展开与原式中分子部分联立,求取常数的值即可.【详解】分式化简后的结果是一个整式分式的分子部分可以化为:解
10、得:,故答案为:【考点】本题考查了分式的变形求字母的值,解决本题的关键是正确的将分式的分子部分进行变形,使得分子部分含有(x+1).2、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可【详解】解:故答案为:【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键3、2【解析】【分析】直接利用零指数幂的性质化简得出答案【详解】解:原式故答案为:2【考点】此题主要考查了实数运算,正确掌握运算法则是解题关键4、5【解析】【分析】根据绝对值和零指数幂进行计算即可【详解】解:,故答案为:5【考点】本题考
11、查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键5、【解析】【分析】根据所列的等式找到规律,由此计算的值【详解】,故答案为:【考点】本题主要考查了数字变化类以及分式的加减,此题在解答时,看出的是左右数据的特点是解题关键三、解答题1、(1)成立;成立;(2)成立【解析】【分析】(1)把a与b的值代入两边的代数式中计算即可,若值相等则成立,否则不成立;把a与b的值代入两边的代数式中计算即可,若值相等则成立,否则不成立;(2)分别把等式两边通分并化简,结果相等则成立,否则不成立【详解】(1)成立;成立(2)左边()2,右边()2所以等式()2()2成立【考点】本题考查了求代数式的值,分式加法运算
12、,体现了由特殊到一般的数学思想,掌握分式的加法运算法则是关键2、,当x3时,原式【解析】【分析】根据分式的加减法和除法可以化简题目中的式子,然后从中选取一个使得原分式有意义的整数代入化简后的式子即可解答本题【详解】解:,x+10,(x+2)(x2)0,x1,x2,3xx可以是3,当x=3时,原式【考点】本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法3、1.【解析】【分析】利用立方差公式和完全立方公式运算,即可解答【详解】提示:,所以,所以,则.【考点】此题考查立方差公式和完全立方公式,掌握运算法则是解题关键4、 (1)30000个(2)58套【解析】【分析】(1)根据题设条件
13、,表示出原计划用的时间,和扩大规模后用的时间,根据前后时间差为464天,可列分式方程,解方程即可得到答案;(2)由(1)可得扩大规模后的日产量,根据每套模具每天平均生产500个,可求出需要的模具总数,进而可得答案(1)解:设原计划的日产量为x个冰墩墩硅胶外壳,则扩大生产规模后每天生产30x个,由题意可得,解之得:x=1000,经检验x=1000是原方程的解且符合题意,30x=30000,所以扩大生产规模后每天生产30000个冰墩墩硅胶外壳(2)解:扩大生产规模后每天生产30000个冰墩墩硅胶外壳,根据题意可得,需要的模具个数为个,所以为达到扩大生产规模后的日产量,至少需要增加60-2=58套模具【考点】本题考查分式方程的实际应用,准确理解题意,并根据题意找出等量关系是解题的关键5、(1);(2)【解析】【分析】(1)先计算乘方、将除法转化为乘法,再约分即可得;(2)先计算括号内异分母分式的减法、除法转化为乘法,再约分即可得【详解】解:(1)原式();(2)原式【考点】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则