1、京改版八年级数学上册期末定向训练试题 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、如图,E是AOB平分线上的一点于点C,于点D,连结,则()A50B45C40D252、已知三角形的两边分别为1和4,
2、第三边长为整数 ,则该三角形的周长为()A7B8C9D103、如图,在中,连接BC,CD,则的度数是()A45B50C55D804、如图,在ABC中,AC5,AB7,AD平分BAC,DEAC,DE2,则ABC的面积为()A14B12C10D75、在实数中,最小的是()ABC0D二、多选题(5小题,每小题4分,共计20分)1、如图AD是ABC的角平分线,DEAC,垂足为E,BF/AC交ED的延长线于点F,若BC恰好平分ABF,AE2BF,则下列四个结论中正确的有()ADEDFBDBDCCADBCDAC3BF2、如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:作线段,分别以点、为圆心,以长
3、为半径画弧,两弧相交于点、;连接、,作直线,且与相交于点则下列说法正确的是()A是等边三角形BCD3、下列命题中是假命题的有()A形状相同的两个三角形是全等形;B在两个三角形中,相等的角是对应角,相等的边是对应边;C全等三角形对应边上的高、中线及对应角平分线分别相等D如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;4、下列各式计算不正确的是()ABCD5、下列二次根式化成最简二次根式后,与被开方数相同的是()ABCD第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图a是长方形纸带,DEF16,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的C
4、FE的度数是_2、若关于x的方程无解,则m的值为_3、如图,若ABCADE,且135,则2_4、如图,在ABC中,ACB90,ACBC,BECE,ADCE于D,AD2,BE1则DE_5、计算:_四、解答题(5小题,每小题8分,共计40分)1、如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即,求这棵树在离地面多高处被折断(即求AC的长度)?2、当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量某种型号的汽车的撞击影响可以用公式I2v2来表示,其中v(千米/分)表示汽车的速度假设某种型号的车在一次撞击试验中测得撞击影响为51.请你求一
5、下该车撞击时的车速是多少(精确到0.1千米/分)3、如图,在中,,;点在上,连接并延长交于(1)求证:;(2)求证:;(3)若,与有什么数量关系?请说明理由4、(1)因式分解:;(2)解方程:5、计算:(1)(2020)02+|1|(2)-参考答案-一、单选题1、A【解析】【分析】根据角平分线的性质得到ED=EC,得到EDC=,求出,利用三角形内角和定理求出答案【详解】解:OE是的平分线,ED=EC, EDC=,故选:A【考点】此题考查了角平分线的性质定理,等腰三角形的性质,三角形内角和定理,熟记角平分线的性质定理是解题的关键2、C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小
6、于两边之和”,求得第三边的取值范围;再根据第三边是整数,从而求得周长【详解】设第三边为x,根据三角形的三边关系,得:4-1x4+1,即3x5,x为整数,x的值为4三角形的周长为1+4+4=9故选C.【考点】此题考查了三角形的三边关系关键是正确确定第三边的取值范围3、B【解析】【分析】连接AC并延长交EF于点M由平行线的性质得,再由等量代换得,先求出即可求出【详解】解:连接AC并延长交EF于点M,故选B【考点】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型4、B【解析】【分析】过点D作DFAB于点F,利用角平分线的性质得出,将的面积表示为面积之和,分别以AB为底,DF为高,AC为
7、底,DE为高,计算面积即可求得【详解】过点D作DFAB于点F,AD平分BAC,DEAC,DFAB,, ,故选:B【考点】本题考查角平分线的性质,角平分线上的点到角两边的距离相等,熟记性质作出辅助线是解题关键5、D【解析】【分析】由正数比负数大可知比小,又因为,所以最小的是【详解】,又故选:D【考点】本题考查了实数的大小比较,实数的比较中也遵循正数大于零,零大于负数的法则比较实数大小的方法较多,常见的有作差法、作商法、倒数法、数轴法、平方法、估算法二、多选题1、ABCD【解析】【分析】根据平行线的性质和和角平分线的定义证得AB=AC,再根据等腰三角形的性质三线合一得到BDCD,ADBC,故B、C
8、正确;再根据全等三角形的判定证明CDEDBF,得到DEDF,CEBF,结合已知即可得出A、D正确【详解】解:BFAC,CCBF,BC平分ABF,ABCCBF,CABC,ABAC,AD是ABC的角平分线,BDCD,ADBC,故选项B、C正确,在CDE与DBF中,C=CBF,CD=BD,EDC=BDF,CDEDBF,CEBF,DEDF,故选项A正确;AE2BF,AC3BF,故D正确;故答案为:ABCD【考点】本题考查全等三角形的判定与性质、平行线的性质、角平分线的定义、等腰三角形的判定与性质,利用等腰三角形的判定和性质和全等三角形的判定和性质求解是解答的关键2、ABC【解析】【分析】根据等边三角形
9、的判定和性质,线段垂直平分线的性质一一判断即可【详解】解:由作图可知:AB=BC=AC,ABC是等边三角形,故A选项正确等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,故B选项正确,故C选项正确,D选项错误故选:ABC【考点】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题3、ABD【解析】【分析】利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项【详解】解:A、形状相同的两个三角形不一定是全等形,原命题是假命题,符合题意;B、在两个全等三角形中,相等的角是对应角,相等的边是对应边
10、,原命题是假命题,符合题意;C、全等三角形对应边上的高、中线及对应角平分线分别相等,正确;原命题是真命题;D、如果两个三角形都和第三个三角形不全等,那么这两个三角形也可能全等,原命题是假命题,符合题意故选:ABD【考点】本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理4、BCD【解析】【分析】解答此题根据二次根式的性质进行化简即可【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、 ,故此选项符合题意;D、,故此选项
11、符合题意;故选BCD【考点】本题主要考查了二次根式的化简,解答此题的关键是熟练掌握二次根式的基本运算法则5、BD【解析】【分析】由题意根据二次根式的性质把各个二次根式化简,进而根据同类二次根式的概念判断即可【详解】解:A、,与的被开方数不相同,故不符合题意;B、,与的被开方数相同,故符合题意;C、,与的被开方数不相同,故不符合题意;D、,与的被开方数相同,故符合题意;故选BD【考点】本题考查的是同类二次根式,熟练掌握同类二次根式的概念以及二次根式的性质是解题的关键三、填空题1、132#132度【解析】【分析】先由矩形的性质得出BFEDEF16,再根据折叠的性质得出CFG1802BFE,由CFE
12、CFGEFG即可得出答案【详解】解:四边形ABCD是矩形,ADBC,BFEDEF16,CFECFGEFG1802BFEEFG180316132,故答案为:132【考点】本题考查了翻折变换的性质、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键2、-1或5或【解析】【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:,可得:,当时,一元一次方程无解,此时,当时,则,解得:或.故答案为:或或.【考点】此题主要考查了分式方程的解,正确分类讨论是解题关键.3、35【解析】【分析】根据全等的性质可得:EADCAB,再根据等
13、式的基本性质可得1235.【详解】解:ABCADE,EADCAB,EADCADCABCAD,2135故答案为35【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.4、1【解析】【分析】先证明ACDCBE,再求出DE的长,解决问题【详解】解:BECE于E,ADCE于D,故答案为:1【考点】此题考查三角形全等的判定和性质,掌握再全等三角形的判定和性质是解题的关键5、【解析】【分析】根据实数的性质即可化简求解【详解】解:故答案为:【考点】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算四、解答题1、这棵树在离地面6米处被折断【解析】【分析】设,利用勾股定理列方
14、程求解即可.【详解】解:设,在中,答:这棵树在离地面6米处被折断【考点】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键直角三角形两条直角边的平方和等于斜边的平方 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解有时也可以利用勾股定理列方程求解2、5.0【解析】【分析】由I=2,这种型号的汽车在一次撞车实验中测得撞击影响为51,即可得,继而求得答案【详解】由题意知2v251,v2,所以v5.0(千米/分)该车撞击时的车速是5.0千米/分【考点】此题考查了算术平方根的应用注意理解题意是解此题的关键3、(1)见解析;(2)见解析;(3)若 ,则,理由见解析【解析】
15、【分析】(1)首先利用SAS证明,即可得出结论;(2)利用全等三角形的性质和等量代换即可得出,从而有,则结论可证;(3)直接根据等腰三角形三线合一得出,又因为,则结论可证【详解】解答:(1)证明:, 在和中, ;(2)证明:,即,;(3)若 ,则理由如下:,BE是中线,【考点】本题主要考查全等三角形的判定及性质,等腰三角形的性质,掌握全等三角形的判定及性质和等腰三角形的性质是解题的关键4、(1);(2)x=4【解析】【分析】(1)先提取公因式,再利用完全平方公式进行分解因式,即可;(2)通过去分母,合并同类项移项,未知数系数化为1,检验,即可求解【详解】解:(1)原式=;(2),去分母得:,即:,解得:x=4,经检验:x=4是方程的解【考点】本题主要考查分解因式,解分式方程,掌握提取公因式和完全平方公式以及取去分母,是解题的关键5、(1)-2;(2)4【解析】【分析】(1)根据零指数幂、二次根式、立方根、绝对值的计算法则来化简,之后按照二次根式的加减计算法则来计算即可;(2)先计算二次根式的乘除,再计算二次根式的加减即可【详解】解:(1)原式=;(2)原式=4【考点】本题考查的是实数的混合计算,熟练掌握相关的计算法则是解题的关键