1、京改版八年级数学上册期中测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 35分)一、单选题(5小题,每小题3分,共计15分)1、若,则的值为()ABCD2、四个数0,1,中,无理数的是()AB1CD03、若数a与其倒数相等,则的值是()ABCD0
2、4、若是二元一次方程组的解,则x2y的算术平方根为()A3B3C D 5、下列各数中,与2的积为有理数的是()A2B3CD二、多选题(5小题,每小题4分,共计20分)1、下列根式中,能再化简的二次根式是()ABCD2、下列说法正确的是()ABC2的平方根是D3、下列各式计算正确的是()ABCD4、下列说法中不正确的是()A带根号的数是无理数B无理数不能在数轴上表示出来C无理数是无限小数D无限小数是无理数5、如果解关于x的分式方程时出现增根,则m的值可能为()ABCD1第卷(非选择题 65分)三、填空题(5小题,每小题5分,共计25分)1、如图,已知数轴上的点A、B、C、D分别表示数、1、2、3
3、,则表示数的点P应落在线段_上(从“”,“”,“”,“”中选择)2、若代数式在实数范围内有意义,则x的取值范围是_3、计算=_4、全民齐心协力共建共享文明城区建设某服装加工厂计划为环卫工人生产1200套冬季工作服,在加工完480套后,工厂引进了新设备,结果工作效率比原计划提高了20%,结果共用54天完成了全部生产任务若设该加工厂原计划每天加工x套冬季工作服,则根据题意列方程为_5、化简:_四、解答题(5小题,每小题8分,共计40分)1、解下列方程(组):(1);(2)2、当运动中的汽车撞击到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量某种型号的汽车的撞击影响可以用公式I2v2来表示,其
4、中v(千米/分)表示汽车的速度假设某种型号的车在一次撞击试验中测得撞击影响为51.请你求一下该车撞击时的车速是多少(精确到0.1千米/分)3、阅读下面的材料,解答后面所给出的问题:两个含二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式互为有理化因式例如:与,与(1)请你写出两个二次根式,使它们互为有理化因式:_,这样化简一个分母含有二次根式的式子时,采用分母、分子同乘分母的有理化因式的方法就可以了例如:(2)请仿照上述方法化简:;(3)比较与的大小4、计算(1) ;(2)5、已知,求的算术平方根-参考答案-一、单选题1、C【解析】【分析】先计算,的算术平方根,并进行化简即
5、可【详解】解:, 故选C【考点】本题考查了算术平方根和数字的变化类规律问题,分别计算出,的算术平方根是解本题的关键2、A【解析】【分析】分别根据无理数、有理数的定义即可判定选择项【详解】0,1,是有理数,是无理数,故选A【考点】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数如,0.8080080008(每两个8之间依次多1个0)等形式3、A【解析】【分析】先将分子分母中能分解因式的分别分解因式,再根据分式的除法运算法则化简原式,最后根据已知条件可得a1,进而代入计算即可求得答案【详解】解:原式,数a与其倒数相等,a1,原式,故选:A【考点】本题考查了分式的
6、除法运算以及倒数的意义,熟练掌握分式的运算法则是解决本题的关键4、C【解析】【分析】将代入二元一次方程组中解出和的值,再计算的算术平方根即可【详解】解:将代入二元一次方程中,得到:,得: 所有方程组的解是: 的算术平方根为,故选:C【考点】本题考查了二元一次方程组的解法,算术平方根的概念,解题的关键是熟练掌握二元一次方程组的解法5、D【解析】【分析】把A、B、C、D均与2相乘即可【详解】解:A、22=4为无理数,故不能;B. 36C. 2D. =6为有理数故选D【考点】本题考查二次根式乘法、积的算术平方根等概念,熟练掌握概念是解答问题的关键二、多选题1、BCD【解析】【分析】判定一个二次根式是
7、不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是【详解】解:A、该二次根式符合最简二次根式的定义,故本选项不符合题意;B、该二次根式的被开方数中含有分母,所以它不是最简二次根式,故本选项符合题意;C、该二次根式的被开方数中含有能开得尽方的因数4,所以它不是最简二次根式,故本选项符合题意;D、该二次根式的被开方数中含有能开得尽方的因数9,所以它不是最简二次根式,故本选项符合题意;故选BCD【考点】本题考查最简二次根式的定义根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或
8、因式2、ABC【解析】【分析】直接根据立方根、二次根式的性质以及乘法运算法则进行判断即可【详解】解:A. ,故选项A正确,符合题意;B. ,故选项B正确,符合题意;C. 2的平方根是,故选项C正确,符合题意;D. ,故选项D错误,不符合题意;故选:ABC【考点】本题考查了平方根和立方根的概念注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0同时还考查了二次根式的性质3、AD【解析】【分析】根据二次根式的加法法则及幂指数的有关运算法则计算【详解】解:A、根据乘法公式,(ab)2=a22ab+b2,正
9、确;B、,错误; C、因为 被开方数不同,所以左边两数不能相加,错误; D、,正确,故选AD【考点】本题考查幂指数与二次根式的综合应用,熟练掌握二次根式的加法法则及幂指数的有关运算法则是解题关键4、ABD【解析】【分析】举出反例如,循环小数1.333,即可判断A、D;根据数轴上能表示任何一个实数即可判断B;根据无理数的定义即可判断C【详解】解:A、如2,不是无理数,故本选项错误,符合题意;B、数轴上的点与实数一一对应,无理数都能在数轴上表示出来,故本选项错误,符合题意;C、无理数是无限不循环小数,即无理数都是无限小数,故本选项正确,不符合题意;D、如1.33333333,是无限循环小数,是有理
10、数,故本选项错误,符合题意;故选:ABD【考点】本题考查了对无理数的意义的理解和运用,无理数包括:开方开不尽的数,含的,一些有规律的数5、AB【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出m的值【详解】解:分式方程,去分母整理,得,;原分式方程有增根,则或,或;故选:AB【考点】此题考查了分式方程的增根,增根确定后可按如下步骤进行:化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值三、填空题1、【解析】【分析】用有理数逼近无理数,求无理数的近似值【详解】解:,故表示数的点P应落在线段上故答案为:【考点】此题主要考查了估算无理数的大小
11、估算及应用,正确掌握估算及应用是解此题关键2、x3【解析】【分析】本题考查二次根式是否有意义以及分式是否有意义,按照对应自变量要求求解即可【详解】因为二次根式有意义必须满足被开方数为非负数所以有又因为分式分母不为零所以故综上: 则:故答案为:x3【考点】二次根式以及分式的结合属于常见组合,需要着重注意分母不为零的隐藏陷阱3、-2【解析】【分析】原式利用除法法则变形,约分即可得到结果【详解】解:原式=-2,故答案为:-2【考点】本题考查了分式的除法,熟练掌握运算法则是解本题的关键4、【解析】【分析】设该加工厂原计划每天加工x套冬季工作服,则实际每天加工套,则按原计划的效率加工天,按提高后的工作效
12、率加工天,从而可得答案【详解】解:设该加工厂原计划每天加工x套冬季工作服,则提高效率后每天加工套, 故答案为:【考点】本题考查的是分式方程的应用,掌握利用分式方程解决工作量问题是解题的关键5、【解析】【分析】根据分式的运算法则化简,即可求解【详解】故答案为:【考点】此题主要考查分式的混合运算,解题的关键是熟知其运算法则四、解答题1、(1);(2)无解【解析】【分析】(1)用加减消元法解方程组即可;(2)先去分母,把分式方程转化为整式方程,求出方程的解,再进行检验即可【详解】解:(1)+,得6x=18,x=3-,得4y=8,y=2所以原方程组的解为;(2),去分母,得6=3(1+x),去括号,得
13、6=3+3x,移项合并,得3x=3,系数化为1,得x=1经检验,x=1是原方程的增根所以原方程无解【考点】本题考查了解二元一次方程组和解分式方程,能把二元一次方程组转化成一元一次方程是解二元一次方程组的关键,能把分式方程转化成整式方程是解分式方程的关键2、5.0【解析】【分析】由I=2,这种型号的汽车在一次撞车实验中测得撞击影响为51,即可得,继而求得答案【详解】由题意知2v251,v2,所以v5.0(千米/分)该车撞击时的车速是5.0千米/分【考点】此题考查了算术平方根的应用注意理解题意是解此题的关键3、 (1)与(答案不唯一)(2)(3)【解析】【分析】(1)利用互为有理化因式的定义求解;
14、(2)把分子和分母分别乘以,然后利用二次根式的乘法法则运算即可;(3)分别化简与,再利用无理数比较大小的方法比较即可(1)根据互为有理化因式的定义可得:与(答案不唯一)(2);(3),【考点】本题考查二次根式的混合运算,:先把二次根式化简为最简二次根式,然后进行二次根式的乘除运算,在合并即可,解题的关键是熟练掌握并运用二次根式的性质和运算法则4、 (1);(2)【解析】【分析】(1)首先化简二次根式,之后进行实数的加减运算即可;(2)首先化简二次根式、计算零次幂,去绝对值,最后进行实数加减运算即可(1)解:原式;(2)解:原式【考点】本题主要考查实数的运算,掌握二次根式的化简、零次幂运算、绝对值的性质是解题的关键5、【解析】【分析】根据算术平方根的定义可得解不等式组,求出a,b,代入求值即可【详解】解:根据题意,得则,2,的算术平方根为【考点】本题考核知识点:算术平方根,解不等式组理解算术平方根定义和解不等式组方法是关键