1、二 圆锥曲线的参数方程一、基础达标1.参数方程(为参数)化为普通方程为()A.x21 B.x21C.y21 D.y21解析易知cos x,sin ,x21,故选A.答案A2.方程(为参数,ab0)表示的曲线是()A.圆 B.椭圆C.双曲线 D.双曲线的一部分解析由xcos a,cos ,代入ybcos ,得xyab,又由ybcos 知,y|b|,|b|,曲线应为双曲线的一部分.答案D3.若点P(3,m)在以点F为焦点的抛物线(t为参数)上,则|PF|等于()A.2 B.3 C.4 D.5解析抛物线为y24x,准线为x1,|PF|为P(3,m)到准线x1的距离,即为4.答案C4.当取一切实数时,
2、连接A(4sin ,6cos )和B(4cos ,6sin )两点的线段的中点的轨迹是()A.圆 B.椭圆 C.直线 D.线段解析设中点M(x,y),由中点坐标公式,得x2sin 2cos ,y3cos 3sin ,即sin cos ,sin cos ,两式平方相加,得2,是椭圆.答案B5.实数x,y满足3x24y212,则2xy的最大值是_.解析因为实数x,y满足3x24y212,所以设x2cos ,ysin ,则2xy4cos 3sin 5sin(),其中sin ,cos .当sin()1时,2xy有最大值为5.答案56.抛物线yx2的顶点轨迹的普通方程为_.解析抛物线方程可化为y,其顶点
3、为,记M(x,y)为所求轨迹上任意一点,则消去t得yx2(x0).答案yx2(x0)7.如图所示,连接原点O和抛物线yx2上的动点M,延长OM到点P,使|OM|MP|,求P点的轨迹方程,并说明是什么曲线?解抛物线标准方程为x22y,其参数方程为得M(2t,2t2).设P(x,y),则M是OP中点.(t为参数),消去t得yx2,是以y轴为对称轴,焦点为(0,1)的抛物线.二、能力提升8.若曲线(为参数)与直线xm相交于不同两点,则m的取值范围是()A.R B.(0,)C.(0,1) D.0,1)解析将曲线化为普通方程得(y1)2(x1)(0x1).它是抛物线的一部分,如图所示,由数形结合知0m1
4、.答案D9.圆锥曲线(t为参数)的焦点坐标是_.解析将参数方程化为普通方程为y24x,表示开口向右,焦点在x轴正半轴上的抛物线,由2p4p2,则焦点坐标为(1,0).答案(1,0)10.设曲线C的参数方程为(t为参数),若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为_.解析化为普通方程为yx2,由于cos x,sin y,所以化为极坐标方程为sin 2cos2,即cos2sin 0.答案cos2sin 011.在直角坐标系xOy中,直线l的方程为xy40,曲线C的参数方程为(为参数).(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点
5、,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.解(1)把极坐标系下的点P化为直角坐标,得点(0,4).因为点P的直角坐标(0,4)满足直线l的方程xy40,所以点P在直线l上.(2)因为点Q在曲线C上,故可设点Q的坐标为(cos ,sin ),从而点Q到直线l的距离为dcos2,由此得,当cos1时,d取得最小值,且最小值为.三、探究与创新12.设椭圆的中心是坐标原点,长轴在x轴上,离心率e,已知点P到这个椭圆上的点的最远距离是,求这个椭圆的方程,并求椭圆上到点P的距离等于的点的坐标.解设椭圆的参数方程是,其中,ab0,02.由e21可得即a2b.设椭圆上的点(x,y)到点P的距离为d,则d2x2a2cos2a2(a2b2)sin23bsin 4b23b2sin23bsin 3b24b23,如果1即b,即当sin 1时,d2有最大值,由题设得()2,由此得b,与b矛盾.因此必有1成立,于是当sin 时,d2有最大值,由题设得()24b23,由此可得b1,a2.所求椭圆的参数方程是由sin ,cos 可得,椭圆上的点,点到点P的距离都是.