收藏 分享(赏)

2022秋高中数学 第七章 随机变量及其分布 7.doc

上传人:高**** 文档编号:609196 上传时间:2024-05-29 格式:DOC 页数:5 大小:80KB
下载 相关 举报
2022秋高中数学 第七章 随机变量及其分布 7.doc_第1页
第1页 / 共5页
2022秋高中数学 第七章 随机变量及其分布 7.doc_第2页
第2页 / 共5页
2022秋高中数学 第七章 随机变量及其分布 7.doc_第3页
第3页 / 共5页
2022秋高中数学 第七章 随机变量及其分布 7.doc_第4页
第4页 / 共5页
2022秋高中数学 第七章 随机变量及其分布 7.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第7章7.4.1 A级基础过关练1若在一次测量中出现正误差和负误差的概率都是,则在5次测量中恰好出现2次正误差的概率是()ABCD【答案】A【解析】pC32.2同时抛两枚均匀的硬币10次,设两枚硬币出现不同面的次数为X,则D(X)()ABCD5【答案】C【解析】每一次抛两枚硬币,出现不同面的概率为,10次独立重复试验中,XB,所以D(X)10.3设随机变量XB,则P(X3)()ABCD【答案】A【解析】XB,由二项分布可得,P(X3)C33.4某电子管正品率为,次品率为,现对该批电子管进行测试,设第X次首次测到正品,则P(X3)()AC2BC2C2D2【答案】C【解析】X3表示第3次首次测到正

2、品,而前两次都没有测到正品,故其概率是2.5若随机变量B(n,0.6),且E()3,则P(1)的值是()A20.44B20.45C30.44D30.64【答案】C【解析】因为B(n,0.6),所以E()n0.6,故有0.6n3,解得n5.则P(1)C0.60.4430.44.6某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分小王选对每题的概率为0.8,则其第一大题得分的均值为_【答案】48【解析】设小王选对的个数为X,得分为Y5X,则XB(12,0.8),E(X)np120.89.6,E(Y)E(5X)5E(X)59.648.7已知随机变量X服从二项分布B(n,p)若E

3、(X)30,D(X)20,则p_.【答案】【解析】由E(X)30,D(X)20,可得解得p.8某射手射击一次,击中目标的概率是0.9,他连续射击3次,且他每次射击是否击中目标之间没有影响,有下列结论:他三次都击中目标的概率是0.93;他第三次击中目标的概率是0.9;他恰好2次击中目标的概率是20.920.1;他恰好2次未击中目标的概率是30.90.12.其中正确结论的序号是_【答案】【解析】正确;由每次射击,击中目标概率为0.9,知他第三次击中目标概率也为0.9,正确;三次射击恰好2次击中目标概率为C0.920.1,不正确;恰好2次未击中目标,即恰好击中目标1次,概率为C0.90.12,正确9

4、某市医疗保险实行定点医疗制度,按照“就近就医,方便管理”的原则,参加保险人员可自主选择四家医疗保险定点医院和一家社区医院作为本人就诊的医疗机构若甲、乙、丙、丁4名参加保险人员所在地区有A,B,C三家社区医院,并且他们的选择相互独立设4名参加保险人员选择A社区医院的人数为X,求X的分布列解:由已知每位参加保险人员选择A社区的概率为,4名人员选择A社区即4次独立重复试验,即XB.所以P(Xk)Ck4k(k0,1,2,3,4)所以X的分布列为X01234P10.两个人射击,甲射击一次中靶概率是,乙射击一次中靶概率是.(1)两人各射击1次,两人总共中靶至少1次就算完成目标,则完成目标概率是多少?(2)

5、两人各射击2次,两人总共中靶至少3次就算完成目标,则完成目标的概率是多少?(3)两人各射击5次,两人总共中靶至少1次的概率是否超过99%?解:(1)共三种情况:乙中靶,甲不中靶,概率为;甲中靶,乙不中靶,概率为;甲乙全中靶,概率为.故所求概率是.(2)共两种情况:共中靶3次的概率为C20C11C11C20;共中靶4次的概率为C20C20,故所求概率为.(3)1C05C0510.99.所以两人各射击5次,两人总共中靶至少1次的概率超过99%.B级能力提升练11同时抛掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为X,则X的均值是()A20B30C25D40【答案】C【

6、解析】抛掷一次正好出现3枚反面向上,2枚正面向上的概率为,所以XB,故E(X)8025.12有n位同学参加某项选拔测试,每位同学能通过测试的概率都是p(0p1),假设每位同学能否通过测试是相互独立的,则至少有1位同学能通过测试的概率为()A(1p)nB1pnCpnD1(1p)n【答案】D【解析】所有同学都不能通过测试的概率为(1p)n,则至少有1位同学能通过测试的概率为1(1p)n.13若随机变量XB,则P(Xk)最大时,k的值为()A1B2C1或2D3【答案】C【解析】依题意P(Xk)Ck5k,k0,1,2,3,4,5.可以求得P(X0),P(X1),P(X2),P(X3),P(X4),P(

7、X5).故当k1或2时P(Xk)最大14设二项分布XB(n,p)的随机变量X的均值与方差分别是2.4和1.44,则二项分布的参数n,p的值为()An4,p0.6Bn6,p0.4Cn8,p0.3Dn24,p0.1【答案】B【解析】由题意得,np2.4,np(1p)1.44,1p0.6,p0.4,n6.15设离散型随机变量X的分布列为P(Xk)Ck300k(k0,1,2,300),则E(X)_.【答案】100【解析】由P(Xk)Ck300k,可知XB,E(X)300100.16已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为,某植物研究所分两个小组分别独立开展该种子的发芽试验,每次试验种一

8、粒种子假定某次试验种子发芽,则称该次试验是成功的;如果种子没有发芽,则称该次试验是失败的(1)第一小组做了3次试验,求至少两次试验成功的概率;(2)第二小组进行试验,到成功了4次为止,求在第4次成功之前共有3次失败,且恰有两次连续失败的概率解:(1)第一小组做了3次试验,至少两次试验成功的概率为C2C3.(2)第二小组在第4次成功前,共进行了6次试验,其中3次成功、3次失败,且恰有两次连续失败,就是3次成功试验的间隔4个空中选2个空,一个空位置放2次连续失败,一个放置一次失败,其各种可能情况的种数为A12.因此所求的概率为1233.C级探究创新练17某市为“市中学生知识竞赛”进行选拔性测试,且

9、规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰,若有500人参加测试,学生成绩的频率分布直方图如图(1)求获得参赛资格的人数;(2)根据频率分布直方图,估算这500名学生测试的平均成绩;(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响已知他前两次连续答错的概率为,求甲在初赛中答题个数X的分布列解:(1)由频率分布直方图得,获得参赛资格的人数为500(0.005 00.004 30.003 2)20125(人)(2)设500名学生的平均成绩为,则(400.006 5600.014 0800.017 01000.005 01200.004 31400.003 2)2078.48(分)(3)设学生甲答对每道题的概率为P(A),则(1P(A)2,P(A).学生甲答题个数X的可能值为3,4,5,则P(X3)33,P(X4)C3C3,P(X5)C22.所以X的分布列为X345P

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3