1、课时跟踪检测(十) 微积分基本定理一、题组对点训练对点练一求简单函数的定积分1.(x1)dx等于()A1 B1 C0 D2解析:选C(x1)dx2220.2.(ex2x)dx等于()A1 Be1 Ce De1解析:选C(ex2x)dx(exx2) (e11)e0e.3 (1cos x)dx()A B2C2 D2解析:选D(xsin x)1cos x, (1cos x)dx(xsin x) 2.4计算定积分 (x2sin x)dx_.解析: (x2sin x)dx.答案:对点练二求分段函数的定积分5设f(x)则f(x)dx等于()A. B. C. D不存在解析:选Cf(x)dxx2dx(2x)d
2、xx3.6计算下列定积分:(1)|x3|dx;(2)若f(x)求f(x)dx. 解:(1)|x3|x3|dx|x3|dx|x3|dx(3x)dx(x3)dx.(2)由已知f(x)dxx2dx (cos x1)dxx3(sin xx) .对点练三根据定积分求参数7若dx3ln 2,则a的值是()A6 B4C3 D2解析:选Ddx(x2ln x) (a2ln a)(1ln 1)(a21)ln a3ln 2.a2.8设f(x)若f(f(1)1,则a_.解析:显然f(1)lg 10,f(0)03t2dtt3a3,得a31,a1.答案:19已知2(kx1)dx4,则实数k的取值范围为_解析:(kx1)d
3、x(2k2)k1,所以2k14,解得k2.答案:10已知f(x)是二次函数,其图象过点(1,0),且f(0)2,f(x)dx0,求f(x)的解析式解:设f(x)ax2bxc(a0),abc0.f(x)2axb,f(0)b2.f(x)dx(ax2bxc)dxabc0.由得f(x)x22x.二、综合过关训练1已知f(x)dx3,则f(x)6dx()A9 B12 C15 D18解析:选Cf(x)6dxf(x)dx6dx36x31215.2若函数f(x)xmnx的导函数是f(x)2x1,则()A. B. C. D.解析:选Af(x)xmnx的导函数是f(x)2x1,f(x)x2x,f(x)dx(x2x
4、)dx.3若y(sin tcos tsin t)dt,则y的最大值是()A1 B2 C1 D0解析:选By(sin tcos tsin t)dtsin tdtdtcos tcos2tcos x1(cos 2x1)cos 2xcosxcos2xcos x(cos x1)222.4若f(x)x22f(x)dx,则f(x)dx等于()A1 B C. D1解析:选B因为f(x)dx是常数,所以f(x)2x,所以可设f(x)x2c(c为常数),所以c2f(x)dx2(x2c)dx2,解得c,f(x)dx(x2c)dxdx.5.(42x)(43x2)dx_.解析:(42x)(43x2)dx(1612x28
5、x6x3)dx8.答案:86若f(x)则f(x)dx_.解析:f(x)dxx2dx(sin x1)dxx3(cos xx) cos 1.答案:cos 17计算下列定积分(1) (|2x3|32x|)dx;(2)dx.解:(1)|2x3|32x| (|2x3|32x|)dx (4x)dx6dx4xdx2x26x2x2(2)2(2)(3)2662322245.(2)dx2xdxdx2(22)2.8已知f(x) (12t4a)dt,F(a)f(x)3a2dx,求函数F(a)的最小值解:f(x) (12t4a)dt(6t24at) 6x24ax(6a24a2)6x24ax2a2,F(a)f(x)3a2dx(6x24axa2)dx(2x32ax2a2x) a22a2(a1)211,当a1时,F(a)最小值1.