1、补集层级(一)“四基”落实练1已知全集U2,1,0,1,Ax|x2x0,则UA等于()A2,1B0,1C2,1,0 D2,0,1解析:选A全集U2,1,0,1,Ax|x2x00,1,UA2,12已知全集UR,Ax|x0,Bx|x1,则集合U(AB)等于()Ax|x0 Bx|x1Cx|0x1 Dx|0x1解析:选D因为ABx|x0或x1,所以U(AB)x|0x1故选D.3(多选)已知U2,3,4,5,6,7,M3,4,5,7,N2,4,5,6,则()AMN4,6 BMNUC(UN)MM D(UM)NUM解析:选BCDU2,3,4,5,6,7,M3,4,5,7,N2,4,5,6,MN4,5,MNU
2、,UN3,7,(UN)MM,UM2,6,(UM)NUM.4(多选)设A,B,I均为非空集合,且满足ABI,则下列各式中正确的是()A(IA)BI B(IA)(IB)ICA(IB) D(IA)(IB)IB解析:选ACD法一:A,B,I满足ABI,先画出Venn图,根据Venn图可判断出A、C、D都是正确的法二:设非空集合A,B,I分别为A1,B1,2,I1,2,3且满足ABI.根据设出的三个特殊的集合A,B,I可判断出A、C、D都是正确的5设集合Mx|1x2,Nx|xk0,若(RM)(RN),则k的取值范围是()Ak|k2 Bk|k1Ck|k1 Dk|k2解析:选B由(RM)(RN)可得MN,又
3、Nx|xk0x|xk,k1.则k的取值范围为k|k16设全集U1,2,x22,A1,x,则UA_.若AU,则x的值为_解析:若x2,则x222,与集合中元素的互异性矛盾,故x2,从而xx22,解得x1或x2(舍去)故U1,2,1,A1,1,则UA2若AU,则x2(舍去)或xx22,解得x1.答案:217已知全集U0,1,2,3,AxU|x2mx0,若UA1,2,则实数m的值是_解析:因为UA1,2,所以A0,3,即方程x2mx0的两个根分别为0,3,所以m3.答案:38设全集UR,集合Mx|3a1x2a,aR,Nx|1x3,若NUM,求实数a的取值范围解:(1)当M,即3a12a时,得a1,U
4、MR,满足条件NUM.(2)当M,即a1时,UMx|x2a或x3a1,aR,若NUM,则3a13或2a1,即a或a,此时a.综上,a的取值范围是.层级(二)能力提升练1已知全集U1,2,3,4,5,6,7,8,集合A2,3,5,6,集合B1,3,4,6,7,则集合A(UB)等于()A2,5 B3,6C2,5,6 D2,3,5,6,8解析:选A因为U1,2,3,4,5,6,7,8,B1,3,4,6,7,所以UB2,5,8又A2,3,5,6,所以A(UB)2,52(多选)设U1,2,3,4,5,若AB2,(UA)B4,(UA)(UB)1,5,则下列结论正确的是()A3A且3B B3A且3BC4A且
5、4B D3A且3B解析:选BC由题意画出Venn图:A2,3,B2,4则3A且3B,4A且4B,故选B、C.3已知全集U1,2,3,4,且U(AB)4,B1,2则适合条件的集合A的个数为_,A(UB)_.解析:U1,2,3,4,且U(AB)4,AB1,2,3又B1,2,A3或1,3或2,3或1,2,3适合条件的集合A有4个UB3,4,A(UB)3答案:434已知Ax|1x3,Bx|mx13m(1)当m1时,求AB;(2)若BRA,求实数m的取值范围解:(1)m1时,Bx|1x4,ABx|1x4(2)RAx|x1或x3当B,即m13m时,得m,满足BRA;当B时,要使BRA成立,则解得m3.综上
6、可知,实数m的取值范围是.5已知集合Ax|x2pxq0,Bx|qx2px10,同时满足AB,A(RB)2,pq0.求p,q的值解:设x0A(x00),则有xpx0q0,两端同除以x,得1pq0,则知B,故集合A,B中元素互为倒数由AB,一定有x0A,使得B,且x0,解得x01.又A(RB)2,则2A,A1,2或A1,2由此得B或B.根据根与系数的关系,有或得或层级(三)素养培优练1设U为全集,对集合X,Y,定义运算“*”,X*YU(XY)对于集合U1,2,3,4,5,6,7,8,X1,2,3,Y3,4,5,Z2,4,7,则(X*Y)*Z_.解析:由于U1,2,3,4,5,6,7,8,X1,2,3,Y3,4,5,Z2,4,7,则XY3,由题中定义可得X*YU(XY)1,2,4,5,6,7,8,则U(XY)Z2,4,7,因此,(X*Y)*ZUU(XY)Z1,3,5,6,8答案:1,3,5,6,82已知全集UR,集合Ax|xa1,Bx|xa2,Cx|xa1,即a.又ABx|xa1或xa2,所以U(AB)x|a1xa2,又U(AB)C,所以a20或a14,即a,故此时a不存在综上,存在这样的实数a,且a的取值范围是.