收藏 分享(赏)

北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc

上传人:高**** 文档编号:566907 上传时间:2024-05-29 格式:DOC 页数:17 大小:1.41MB
下载 相关 举报
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第1页
第1页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第2页
第2页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第3页
第3页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第4页
第4页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第5页
第5页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第6页
第6页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第7页
第7页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第8页
第8页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第9页
第9页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第10页
第10页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第11页
第11页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第12页
第12页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第13页
第13页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第14页
第14页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第15页
第15页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第16页
第16页 / 共17页
北京市西城区2020届高三数学第一次模拟考试试题(含解析).doc_第17页
第17页 / 共17页
亲,该文档总共17页,全部预览完了,如果喜欢就下载吧!
资源描述

1、北京市西城区2020届高三数学第一次模拟考试试题(含解析)第卷(选择题 共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合则( )A. B. C. D. 【答案】C【解析】【分析】直接求交集得到答案.【详解】集合,则.故选:.【点睛】本题考查了交集运算,属于简单题.2.若复数,则( )A. B. C. D. 20【答案】B【解析】【分析】化简得到,再计算模长得到答案.【详解】,故.故选:.【点睛】本题考查了复数的运算,复数的模,意在考查学生的计算能力.3.下列函数中,值域为R且为奇函数的是( )A. B. C. D. 【答

2、案】C【解析】【分析】依次判断函数的值域和奇偶性得到答案.【详解】A. ,值域为,非奇非偶函数,排除; B. ,值域为,奇函数,排除;C. ,值域为,奇函数,满足; D. ,值域为,非奇非偶函数,排除;故选:.【点睛】本题考查了函数的值域和奇偶性,意在考查学生对于函数知识的综合应用.4.设等差数列的前项和为,若,则( )A. 10B. 9C. 8D. 7【答案】B【解析】【分析】根据题意,解得,得到答案.【详解】,解得,故.故选:.【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.5.设则以线段为直径的圆的方程是( )A. B. C. D. 【答案】A【解析】【分析】计算的中点坐标为,

3、圆半径为,得到圆方程.【详解】的中点坐标为:,圆半径为,圆方程为.故选:.【点睛】本题考查了圆的标准方程,意在考查学生的计算能力.6.设为非零实数,且,则( )A. B. C. D. 【答案】C【解析】【分析】取,计算知错误,根据不等式性质知正确,得到答案.【详解】,故,故正确;取,计算知错误;故选:.【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.7.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则( )A. B. C. D. 【答案】D【解析】【分析】如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足

4、条件.故,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.8.设为非零向量,则“”是“与共线”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据向量共线的性质依次判断充分性和必要性得到答案.【详解】若,则与共线,且方向相同,充分性;当与共线,方向相反时,故不必要.故选:.【点睛】本题考查了向量共线,充分不必要条件,意在考查学生的推断能力.9.已知函数的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )绕着轴上一点旋转; 沿轴正方

5、向平移;以轴为轴作轴对称;以轴的某一条垂线为轴作轴对称.A. B. C. D. 【答案】D【解析】【分析】计算得到,故函数是周期函数,轴对称图形,故正确,根据图像知错误,得到答案.【详解】,当沿轴正方向平移个单位时,重合,故正确;,故,函数关于对称,故正确;根据图像知:不正确;故选:.【点睛】本题考查了根据函数图像判断函数性质,意在考查学生对于三角函数知识和图像的综合应用.10.设函数若关于的方程有四个实数解,其中,则的取值范围是( )A. B. C. D. 【答案】B【解析】分析】画出函数图像,根据图像知:,计算得到答案.【详解】,画出函数图像,如图所示:根据图像知:,故,且.故.故选:.【

6、点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.第卷(非选择题共110分)二、填空题:本大题共5小题,每小题5分,共25分.11.在的展开式中,常数项为_.(用数字作答)【答案】【解析】【分析】的展开式的通项为,取计算得到答案.【详解】的展开式的通项为:,取得到常数项.故答案为:.【点睛】本题考查了二项式定理,意在考查学生的计算能力.12.若向量满足,则实数的取值范围是_.【答案】【解析】【分析】根据题意计算,解得答案.【详解】,故,解得.故答案为:.【点睛】本题考查了向量的数量积,意在考查学生的计算能力.13.设双曲线的一条渐近线方程为,则该双曲线的离心

7、率为_.【答案】【解析】【分析】根据渐近线得到,计算得到离心率.【详解】,一条渐近线方程为:,故,.故答案为:.【点睛】本题考查了双曲线的渐近线和离心率,意在考查学生的计算能力.14.函数的最小正周期为_;若函数在区间上单调递增,则的最大值为_.【答案】 (1). (2). 【解析】【分析】直接计算得到答案,根据题意得到,解得答案.【详解】,故,当时,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.15.在一次体育水平测试中,甲、乙两校均有100名学生参加,其中:甲校男生成绩的优秀率为70%,女生成绩的优秀率为50%;乙校男生成绩的优秀

8、率为60%,女生成绩的优秀率为40%.对于此次测试,给出下列三个结论:甲校学生成绩的优秀率大于乙校学生成绩的优秀率;甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率;甲校学生成绩的优秀率与甲、乙两校所有学生成绩的优秀率的大小关系不确定.其中,所有正确结论的序号是_.【答案】【解析】【分析】根据局部频率和整体频率的关系,依次判断每个选项得到答案.【详解】不能确定甲乙两校的男女比例,故不正确;因为甲乙两校的男生的优秀率均大于女生成绩的优秀率,故甲、乙两校所有男生成绩的优秀率大于甲、乙两校所有女生成绩的优秀率,故正确;因为不能确定甲乙两校的男女比例,故不能确定甲校学生成绩的优秀率与甲

9、、乙两校所有学生成绩的优秀率的大小关系,故正确.故答案为:.【点睛】本题考查局部频率和整体频率的关系,意在考查学生的理解能力和应用能力.三、解答题:本大题共6小题,共85分.解答应写出必要的文字说明、证明过程或演算步骤.16.如图,在四棱柱中,平面,底面ABCD满足BC,且()求证:平面;()求直线与平面所成角的正弦值.【答案】() 证明见解析;()【解析】分析】()证明,根据得到,得到证明.() 如图所示,分别以为轴建立空间直角坐标系,平面的法向量,计算向量夹角得到答案.【详解】() 平面,平面,故.,故,故.,故平面.()如图所示:分别以为轴建立空间直角坐标系,则,.设平面的法向量,则,即

10、,取得到,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生空间想象能力和计算能力.17.已知满足 ,且,求的值及的面积.(从,这三个条件中选一个,补充到上面问题中,并完成解答.)【答案】见解析【解析】【分析】选择时:,,计算,根据正弦定理得到,计算面积得到答案;选择时,故,为钝角,故无解;选择时,根据正弦定理解得,根据正弦定理得到,计算面积得到答案.详解】选择时:,,故.根据正弦定理:,故,故.选择时,故,为钝角,故无解.选择时,根据正弦定理:,故,解得,.根据正弦定理:,故,故.【点睛】本题考查了三角恒等变换,正弦定理,面积公式,意在考查学生的计算能力和综合应用能力

11、.18.2019年底,北京2022年冬奥组委会启动志愿者全球招募,仅一个月内报名人数便突破60万,其中青年学生约有50万人.现从这50万青年学生志愿者中,按男女分层抽样随机选取20人进行英语水平测试,所得成绩(单位:分)统计结果用茎叶图记录如下:()试估计在这50万青年学生志愿者中,英语测试成绩在80分以上的女生人数;()从选出的8名男生中随机抽取2人,记其中测试成绩在70分以上的人数为X,求的分布列和数学期望;()为便于联络,现将所有的青年学生志愿者随机分成若干组(每组人数不少于5000),并在每组中随机选取个人作为联络员,要求每组的联络员中至少有1人的英语测试成绩在70分以上的概率大于90

12、%.根据图表中数据,以频率作为概率,给出的最小值.(结论不要求证明)【答案】()万;()分布列见解析, ;()【解析】【分析】()根据比例关系直接计算得到答案.() 的可能取值为,计算概率得到分布列,再计算数学期望得到答案.() 英语测试成绩在70分以上的概率为 ,故,解得答案.【详解】()样本中女生英语成绩在分以上的有人,故人数为:万人.() 8名男生中,测试成绩在70分以上的有人,的可能取值为:.,.故分布列为:.() 英语测试成绩在70分以上的概率为 ,故,故.故的最小值为.【点睛】本题考查了样本估计总体,分布列,数学期望,意在考查学生的计算能力和综合应用能力.19.设函数其中()若曲线

13、在点处切线的倾斜角为,求的值;()已知导函数在区间上存在零点,证明:当时,.【答案】();()证明见解析【解析】【分析】()求导得到,解得答案.() ,故,在上单调递减,在上单调递增,设,证明函数单调递减,故,得到证明.【详解】(),故,故.() ,即,存在唯一零点,设零点为,故,即,在上单调递减,在上单调递增,故,设,则,设,则,单调递减,故恒成立,故单调递减.,故当时,.【点睛】本题考查了函数切线问题,利用导数证明不等式,转化为函数的最值是解题的关键.20.设椭圆,直线经过点,直线经过点,直线直线,且直线分别与椭圆相交于两点和两点.()若分别为椭圆的左、右焦点,且直线轴,求四边形的面积;(

14、)若直线的斜率存在且不为0,四边形为平行四边形,求证:;()在()的条件下,判断四边形能否为矩形,说明理由.【答案】() ;()证明见解析;()不能,证明见解析【解析】【分析】()计算得到故,计算得到面积.() 设为,联立方程得到,计算,同理,根据得到,得到证明.() 设中点为,根据点差法得到,同理,故,得到结论.【详解】(),故,.故四边形的面积为.()设为,则,故,设,故,同理可得,故,即,故.()设中点为,则,相减得到,即,同理可得:的中点,满足,故,故四边形不能为矩形.【点睛】本题考查了椭圆内四边形的面积,形状,根据四边形形状求参数,意在考查学生的计算能力和综合应用能力.21.对于正整

15、数,如果个整数满足,且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.()写出整数4的所有“正整数分拆”;()对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;()对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)【答案】() ,;() 为偶数时,为奇数时,;()证明见解析,【解析】【分析】()根据题意直接写出答案.()讨论当为偶数时,最大为,当为奇数时,最大为,得到答案.() 讨论当为奇数时,至少存在一个全为1的拆分,故,当为偶数时, 根据对应关系得

16、到,再计算,得到答案.【详解】()整数4的所有“正整数分拆”为:,.()当为偶数时,时,最大为;当为奇数时,时,最大为;综上所述:为偶数,最大为,为奇数时,最大为.()当为奇数时,至少存在一个全为1的拆分,故;当为偶数时,设是每个数均为偶数的“正整数分拆”,则它至少对应了和的均为奇数的“正整数分拆”,故.综上所述:.当时,偶数“正整数分拆”为,奇数“正整数分拆”为,;当时,偶数“正整数分拆”为,奇数“正整数分拆”为,故;当时,对于偶数“正整数分拆”,除了各项不全为的奇数拆分外,至少多出一项各项均为的“正整数分拆”,故.综上所述:使成立的为:或.【点睛】本土考查了数列的新定义问题,意在考查学生的计算能力和综合应用能力.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3