第二章 平面向量复习课(二)一、教学过程(一)习题讲解:习案P173面6题。(二)典型例题例1已知圆C:及点A(1,1),M是圆上任意一点,点N在线段MA的延长线上,且,求点N的轨迹方程。练习:1. 已知O为坐标原点,=(2,1),=(1,7),=(5,1),=x,y= (x,yR) 求点P(x,y)的轨迹方程;2. 已知常数a0,向量,经过定点A(0,a)以为方向向量的直线与经过定点B(0,a)以为方向向量的直线相交于点P,其中.求点P的轨迹C的方程;例2.设平面内的向量, , ,点P是直线OM上的一个动点,求当取最小值时,的坐标及APB的余弦值解 设 点P在直线OM上, 与共线,而, x2y=0即x=2y,有 , = 5y220y+12= 5(y2)28 从而,当且仅当y=2,x=4时,取得最小值8,此时,于是, 小结:利用平面向量求点的轨迹及最值。