1、课时限时检测(四十九)椭圆(时间:60分钟满分:80分)一、选择题(每小题5分,共30分)12m6是方程1表示椭圆的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【答案】B2椭圆x2my21的焦点在y轴上,长轴长是短轴长的两倍,则m的值为()A.B.C2D4【答案】A3定义:关于x的不等式|xA|B的解集叫A的B邻域已知ab2的ab邻域为区间(2,8),其中a、b分别为椭圆1的长半轴和短半轴若此椭圆的一焦点与抛物线y24x的焦点重合,则椭圆的方程为()A.1 B.1C.1 D.1【答案】B4已知椭圆y21的左、右焦点分别为F1、F2,点M在该椭圆上,且0,则点M到y轴的距
2、离为()A. B.C. D.【答案】B5(2013大纲全国卷)椭圆C:1的左、右顶点分别为A1、A2,点P在C上且直线PA2斜率的取值范围是2,1,那么直线PA1斜率的取值范围是()A. B.C. D.【答案】B6(2013课标全国卷)已知椭圆E:1(ab0)的右焦点为F(3,0),过点F的直线交E于A,B两点若AB的中点坐标为(1,1),则E的方程为()A.1 B.1C.1 D.1【答案】D二、填空题(每小题5分,共15分)7在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且ABF2的周长为16,那么C的方程为 【答案】18已知
3、F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足|PF1|2|PF2|,PF1F230,则椭圆的离心率为 【答案】9已知对kR,直线ykx10与椭圆1恒有公共点,则实数m的取值范围是 【答案】m1且m5三、解答题(本大题共3小题,共35分)10(10分)如图852所示,点P是椭圆1上的一点,F1和F2是焦点,且F1PF230,求F1PF2的面积图852【解】在椭圆1中,a,b2.c1.又点P在椭圆上,|PF1|PF2|2.由余弦定理知|PF1|2|PF2|22|PF1|PF2|cos 30|F1F2|2(2c)24.式两边平方得|PF1|2|PF2|22|PF1|PF2|20.得(2)|P
4、F1|PF2|16.|PF1|PF2|16(2)SPF1F2|PF1|PF2|sin 3084.11(12分)设椭圆C:1(ab0)的右焦点为F,过点F的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60,2.(1)求椭圆C的离心率;(2)如果|AB|,求椭圆C的方程【解】设A(x1,y1),B(x2,y2),由题意知y10,y20.(1)直线l的方程为y(xc),其中c.联立得(3a2b2)y22b2cy3b40,解得y1,y2,因为2,所以y12y2.即2,得离心率e.(2)因为|AB|y2y1|,所以.由得ba.所以a,得a3,b.椭圆C的方程为1.12(13分)(2013北京高考)直
5、线ykxm(m0)与椭圆W:y21相交于A,C两点,O是坐标原点(1)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(2)当点B在W上且不是W的顶点时,证明四边形OABC不可能为菱形【解】(1)因为四边形OABC为菱形,所以AC与OB互相垂直平分所以可设A,代入椭圆方程得1,即t.所以|AC|2.(2)证明:假设四边形OABC为菱形因为点B不是W的顶点,且ACOB,所以k0.由消去y并整理得(14k2)x28kmx4m240.设A(x1,y1),C(x2,y2),则,km,所以AC的中点为M.因为M为AC和OB的交点,且m0,k0,所以直线OB的斜率为.因为k1,所以AC与OB不垂直所以四边形OABC不是菱形,与假设矛盾所以当点B在W上且不是W的顶点时,四边形OABC不可能是菱形