收藏 分享(赏)

数学:3.3.2指数函数及其性质 教案 (北师大必修1).doc

上传人:a**** 文档编号:540848 上传时间:2025-12-10 格式:DOC 页数:4 大小:206KB
下载 相关 举报
数学:3.3.2指数函数及其性质 教案 (北师大必修1).doc_第1页
第1页 / 共4页
数学:3.3.2指数函数及其性质 教案 (北师大必修1).doc_第2页
第2页 / 共4页
数学:3.3.2指数函数及其性质 教案 (北师大必修1).doc_第3页
第3页 / 共4页
数学:3.3.2指数函数及其性质 教案 (北师大必修1).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3.3.2指数函数及其性质一. 教学目标:1知识与技能:通过实际问题了解指数函数的实际背景;理解指数函数的概念和意义,根据图象理解和掌握指数函数的性质.体会具体到一般数学讨论方式及数形结合的思想。2情感、态度、价值观:让学生了解数学来自生活,数学又服务于生活的哲理;培养学生观察问题,分析问题的能力.3过程与方法:展示函数图象,让学生通过观察,进而研究指数函数的性质.二重难点:重点:指数函数的概念和性质及应用.难点:指数函数性质的归纳,概括及其应用.三、学法与教法:学法:观察法、讲授法及讨论法;教法: 探究交流,讲练结合。四、教学过程:(一)、复习指数函数的图象和性质(二)、例题例1:(P66例

2、7)比较下列各题中的个值的大小(1)1.72.5 与 1.73( 2 )与( 3 ) 1.70.3 与 0.93.10解法1:用数形结合的方法,如第(1)小题,用图形计算器或计算机画出的图象,在图象上找出横坐标分别为2.5, 3的点,显然,图象上横坐标就为3的点在横坐标为2.5的点的上方,所以 .解法2:用计算器直接计算: 所以,解法3:由函数的单调性考虑因为指数函数在R上是增函数,且2.53,所以,仿照以上方法可以解决第(2)小题 .注:在第(3)小题中,可以用解法1,解法2解决,但解法3不适合 .由于1.70.3=0.93.1不能直接看成某个函数的两个值,因此,在这两个数值间找到1,把这两

3、数值分别与1比较大小,进而比较1.70.3与0.93.1的大小 .思考:1、已知按大小顺序排列.2. 比较(0且0).指数函数不仅能比较与它有关的值的大小,在现实生活中,也有很多实际的应用.例2(P67例8)截止到1999年底,我们人口哟13亿,如果今后,能将人口年平均均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?分析:可以先考试一年一年增长的情况,再从中发现规律,最后解决问题:1999年底 人口约为13亿经过1年 人口约为13(1+1%)亿经过2年 人口约为13(1+1%)(1+1%)=13(1+1%)2亿经过3年 人口约为13(1+1%)2(1+1%)=13(1+

4、1%)3亿经过年 人口约为13(1+1%)亿经过20年 人口约为13(1+1%)20亿解:设今后人口年平均增长率为1%,经过年后,我国人口数为亿,则当=20时,答:经过20年后,我国人口数最多为16亿.小结:类似上面此题,设原值为N,平均增长率为P,则对于经过时间后总量,0且1)的函数称为指数型函数 .思考:P68探究:(1)如果人口年均增长率提高1个平分点,利用计算器分别计算20年后,33年后的我国人口数 .(2)如果年平均增长率保持在2%,利用计算器20202100年,每隔5年相应的人口数 .(3)你看到我国人口数的增长呈现什么趋势?(4)如何看待计划生育政策?(三)、课堂练习(1)右图是指数函数 的图象,判断与1的大小关系;(2)设其中0,1,确定为何值时,有: (3)用清水漂洗衣服,若每次能洗去污垢的,写出存留污垢与漂洗次数的函数关系式,若要使存留的污垢,不超过原有的1%,则少要漂洗几次(此题为人教社B版101页第6题).(四)、归纳小结:本节课研究了指数函数性质的应用,关键是要记住1或0时的图象,在此基础上研究其性质 .本节课还涉及到指数型函数的应用,形如(a0且1).(五)、作业:P69 A组第 7 ,8 题P70 B组 第 1,4题六、教后反思:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1