1、数学高二必修三人教版第二章知识点:用样本估计总体数学是学习和研究现代科学技术必不可少的基本工具。查字典数学网为大家推荐了数学高二必修三人教版第二章知识点,请大家仔细阅读,希望你喜欢。一、用样本估计总体知识点总结1.频率分布直方图(1)通常我们对总体作出的估计一般分成两种:一种是用样本的频率分布估计总体的分布;另一种是用样本的数字特征估计总体的数字特征.(2)作频率分布直方图的步骤求极差(即一组数据中最大值与最小值的差).决定组距与组数.将数据分组.列频率分布表.画频率分布直方图.(3)在频率分布直方图中,纵轴表示频率/组距,数据落在各小组内的频率用各小长方形的面积表示.各小长方形的面积总和等于
2、1.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,即总体密度曲线.3.茎叶图的优点用茎叶图表示数据有两个突出的优点:一是统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录,随时添加,方便记录与表示.4.样本方差与标准差注意:两个异同(1)众数、中位数与平均数的异同众数、中位数及平均数都是描述一组数据集中趋势的量,平均数是最重要的量.由于平均数与每一个样本数据有关,所以
3、,任何一个样本数据的改变都会引起平均数的改变,这是中位数、众数都不具有的性质.众数考查各数据出现的频率,其大小只与这组数据中的部分数据有关.当一组数据中有不少数据多次重复出现时,其众数往往更能反映问题.某些数据的变动对中位数可能没有影响.中位数可能出现在所给数据中,也可能不在所给数据中.当一组数据中的个别数据变动较大时,可用中位数描述其集中趋势.(2)标准差与方差的异同标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度就越大;标准差、方差越小,数据的离散程度则越小,因为方差与原始数据的单位不同,且平方后可能夸大了偏差的程度,所以虽然方差与标准差在刻画样本数据的分散
4、程度上是一样的,但在解决实际问题时,一般多采用标准差.三个特征利用频率分布直方图估计样本的数字特征:(1)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数值.教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。(2)平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开
5、家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。(3)众数:最高的矩形的中点的横坐标.“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。说文解字中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于史记,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。小编为大家提供的数学高二必修三人教版第二章知识点,大家仔细阅读了吗?最后祝同学们学习进步。