1、第十一章概率与统计11.1随机事件及其概率考点随机事件及其概率1.(2013江西,4,5分)集合A=2,3,B=1,2,3,从A,B中各任意取一个数,则这两数之和等于4的概率是()A.B.C.D.答案C2.(2013重庆,13,5分)若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为.答案3.(2013湖南,18,12分)某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:X1234Y51484542这里,两株作物
2、“相近”是指它们之间的直线距离不超过1米.(1)完成下表,并求所种作物的平均年收获量;Y51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.解析(1)所种作物的总株数为1+2+3+4+5=15,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株.列表如下:Y51484542频数2463所种作物的平均年收获量为=46.(2)由(1)知,P(Y=51)=,P(Y=48)=.故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y48)=P(Y=51)+P(Y
3、=48)=+=.4.(2013江西,18,12分)小波以游戏方式决定是去打球、唱歌还是去下棋.游戏规则为:以O为起点,再从A1,A2,A3, A4,A5,A6(如图)这6个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X,若X0就去打球,若X=0就去唱歌,若X0就去下棋.(1)写出数量积X的所有可能取值;(2)分别求小波去下棋的概率和不去唱歌的概率.解析(1) X的所有可能取值为-2,-1,0,1.(2)数量积为-2的有,共1种;数量积为-1的有,共6种;数量积为0的有,共4种;数量积为1的有,共4种.故所有可能的情况有15种.所以小波去下棋的概率为p1=;因为去唱歌的概率为p2=
4、,所以小波不去唱歌的概率p=1-p2=1-=.5.(2013辽宁,19,12分)现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答.试求:(1)所取的2道题都是甲类题的概率;(2)所取的2道题不是同一类题的概率.解析(1)将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,共15个,而且这些基本事件的出现是等可能的.用A表示“都是甲类题”这一事件,则A包含的基本事件有1,2,1,3,1,4,2,3,2,4,3,4,共6个,所以P(A)=.(6分)(2)基本事件同(1),用B表示“不是同一类题”这一事件,则B包含的基本事件有1,5,1,6,2,5,2,6,3,5,3,6,4,5,4,6,共8个,所以P(B)=.(12分)