1、数学学习与数学课程改革数学本身具有的应用价值、文化价值和智力价值,确立了它在学校课程中总是占据重要地位。数学学习已成为中小学学生人人面对的一项重要活动。因此,认识数学学习、数学课程的内涵及彼此的关系,显得极为重要。一、数学学习人类的数学学习活动,从最初的结绳记数等自然经验的积累,演变成以班级授课形式为主的学校数学教育,已有数千年历史。然而,关于数学学习的基本理论的研究,诸如数学学习的实质是什么?数学学习有何特点?学生在其学习过程中表现出哪些心理规律?影响学生数学学习的因素分析等等,并没有形成一种共识,亟待更深入地研究和探索。(一)数学学习的实质数学学习的实质,牵涉到两个更为重要的问题:一是数学
2、学习的对象数学的本质是什么?二是数学学习作为一类学习活动学习的实质是什么?前一个问题,是数学哲学的元问题,有着许多不同观点。如“纯数学的对象是现实世界的空间形式和数量关系”,“数学研究现实世界和人类经验各方面的各种形式模型的构造”,“数学是研究广义的量(即模式结构形式)的学科”等等。对数学本质的不同认识,形成了各种数学哲学流派,由于所持哲学立场各异,各派没有形成共识的迹象。随着认识的不断深化,人们看到尽管数学强调严密,但只是一种相对真理,大部分内容仅仅满足了逻辑合理性,与现实真理性有很大距离。学习的本质问题,则是各种学习理论分野的焦点,这方面,具有代表性的是以桑代克、华生、斯金纳等为代表的行为
3、主义(或联想主义)学习理论和以格式塔、托尔曼、布鲁纳等为代表的认知学习理论。在行为派看来,学习的实质就是学习者通过经典性条件反射或者操作性条件反射的形成而获得经验的过程,即刺激与反应之间的联结。在认知派看来,学习过程不是简单地在强化条件下形成刺激与反应的联结,而是学习者积极主动地形成新的完形或认知结构的过程,即学习是一种积极主动的内部加工过程。随着两大学派的争论和研究的深入,任何一派都无法涵盖对方,都无法解释一切学习。因此,西方心理学界又出现了折中主义的学习理论,将学习分为包括简单的联结学习与复杂的认知学习的若干层级,调和两大学派,试图说明学习的全部涵义。如加涅最初将学习分为三类联结学习(信号
4、学习、刺激反应学习、连锁学习)和五类认知学习(言语联想、辨别学习、概念学习、规则学习、问题解决)。后来他又修改为一类联结学习(连锁学习)和五类认知学习(辨别学习、具体概念学习、抽象概念学习、规则学习、高级规则学习)。折中主义学习理论吸收了两大学派的合理成分,但在学习本质的研究上,并没有实质性进展。对数学本质的不同理解和学习实质的不同看法,给我们认识数学学习的实质增加了难度就中小学学生而言,他(她)们所面对的数学学习内容,主要是反映现实世界的数量关系和空间形式,数学学习活动是受数学课程规范的、在学校情境中进行的,它不同于人类一般的数学学习。因此,从心理学的角度,中小学学生的数学学习,是按教育目标
5、在数学课程规定的范围内,由获得数学知识经验而引起的比较持久的行为或倾向的变化过程。这里的行为或倾向,包括学生外在的行为以及内在的数学认知、情感、兴趣、态度、动机等等。(二)数学学习的特点数学自身的特点,决定了数学学习是人类学习活动中的一种特殊活动。数学学习需要学生有较强的逻辑思维能力、形象思维能力和直觉思维能力,用来处理多级抽象概括的数学知识经验,进行形式符号语言的运算推理。学生数学学习的思维方式,往往是“理论实践理论”的模式,与数学家的思维模式相比,必须经历逆转的心理过程。中小学学生的数学学习,是按课程方案在教师指导下进行的数学学科的学习,数学课程的特点使学生的数学学习更具有自己的风格和特色
6、。(三)数学学习的类型中小学学生究竟进行什么样式的数学学习?回答这一问题,对揭示学生学习的心理规律、教师组织教学、数学课程建设等等都很有意义。分类标准不同,看法各异。如按数学学习的内容,将其分为:数学知识的学习;数学活动经验的学习;创造性数学活动经验的学习。按学生认知活动水平的层次,数学学习包括:数学符号学习;数学概念学习;数学原理学习;数学运用学习;数学问题解决学习。如果从学习的性质来看,中小学学生的数学学习包括:获得数学知识经验的学习;获得数学学习机制的学习,即元学习。前者为一般的学习,后者则是有关数学的外部活动不断内化的过程,是学生个体心理机能的获得过程。上述认识表明,中小学学生的数学学
7、习是一项复杂的心理活动,它受学生个体发展水平、学校教育、数学课程等多种因素的制约。其中,数学课程不但影响着人们对数学学习实质、特点的理解,而且直接影响学生数学学习的内容、方法以及学习的成果。二、数学课程教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。我认为,数学课程是对学校数学教育内容、标准和进度的总体安排和设计。它是联结教师、学生的桥梁。教师按课程的规定,为学生获得数学知识经验、个性发展提供最
8、有效的途径与方法,学生则根据课程规定的数学内容、标准、进度进行学习。因此,数学课程反映着学生在教师指导下进行的一切数学学习活动。其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。美国课程论专家泰勒认为,教育的本来课题,不是教授者完成某种活动,而是要在学生的行为中引起某种重要的变化。数学课程建设为教师达到这一目标提供基本方案和依据,因而它对学生数学学习的质量、水平有着决定性意义。要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。