1、高考资源网() 您身边的高考专家第二章2.22.2.1第二课时一、选择题1下列式子中正确的个数是()loga(b2c2)2logab2logac;(loga3)2loga32;loga(bc)(logab)(logac);logax22logax.A0 B1 C2 D3答案A2如果lgxlga2lgb3lgc,则x等于()Aa2b3cBab2c3C. D.答案C解析lgxlga2lgb3lgclg,x,故选C.3若log34log8mlog416,则m等于()A3B9 C18D27答案D解析原式可化为:log8m,log2m2log43,m3,m27,故选D.4方程log3(x1)log9(x
2、5)的解为()Ax1Bx1或x4Cx4Dx1且x4答案C解析一定要注意对数的真数大于零,即,解得x4,故C.5已知log7log3(log2x)0,那么x等于()A. B. C. D.答案C解析log7log3(log2x)0,则log3(log2x)1,log2x3,x8,因此x.故选C.6若lga,lgb是方程2x24x10的两个根,则(lg)2的值等于()A2 B. C4 D.答案A解析由根与系数的关系,得lgalgb2,lgalgb,(lg)2(lgalgb)2(lgalgb)24lgalgb2242,故选A.二、填空题7化简log2(1)log2(1)_.答案解析log2(1)log
3、2(1)log2(1)22log22log22.8若lgxlgya,则lg()3lg()3_.答案3a解析lgxlgya,lg()3lg()33(lglg)3(lgxlgy)3a.三、解答题9计算:(1)(log33)2log0.259log5log1;(2)lg25lg8lg5lg20(lg2)2;(3).分析直接利用对数的运算性质进行计算,注意对真数进行适当的拆分与组合解析(1)(log33)2log0.259log5log1()21901.(2)原式lg25lg8lglg(102)(lg2)2lg25lg4(1lg2)(1lg2)(lg2)2lg(254)1(lg2)2(lg2)23.(
4、3)1.点评在解题中,对于常用对数要注意要1025,2105,5102的拆解与公式的灵活运用10(1)计算:(log23log49log827log2n3n)log9;(2)设lg2a,lg3b,求log512.解析(1)原式(log23)log9(log23log23log23log23)log9nlog23log32.(2)log512.因为lg2a,lg3b,所以log512.一、选择题1若xlog341,则4x4x的值为()A. B. C2D1答案B解析由xlog341得xlog43,所以4x4x3,故选B.2lg83lg5的值为()A3B1 C1D3答案D解析lg83lg53lg23
5、lg53(lg2lg5)3lg103,故选D.3设2a5bm,且2,则m()A.B10 C20D100答案A解析alog2m,blog5m,则logm2logm5logm102.m,故选A.4已知方程x2xlog26log230的两个实数根为、,则()()等于()A.B36 C6D6答案B解析由题意知:log26,()()()()log264log2622log2636,故选B.二、填空题5lg2lg2()1_.答案1解析lg2lg2()1lglg421.6若logax2,logbx3,logcx6,则log(abc)x_.答案1解析logax2,logxa.同理logxc,logxb.log
6、abcx1.三、解答题7若a,b是方程2(lgx)2lgx410的两个实根,求lg(ab)(logablogba)的值.分析用换元法把对数方程转化为一元二次方程,由根与系数的关系求出a与b的关系式,可得结果解析原方程可化为2(lgx)24lgx10,设tlgx,则原方程化为2t24t10.所以t1t22,t1t2.由已知a,b是原方程的两个实根,则t1lga,t2lgb,所以lgalgb2,lgalgb.所以lg(ab)(logablogba)(lgalgb)()(lgalgb)212.8已知3x4y6z.(1)若z1,求(x1)(2y1)的值;(2)若x,y,z为正数,求证:.解析(1)由3x4y6得xlog36,ylog46,所以(x1)(2y1)(log361)(2log461)log32log491.(2)证明:设3x4y6zm(m1),则xlog3m,ylog4m,zlog6m.所以logm3,logm4,logm6.又因为2logm3logm4logm362logm6,所以.- 6 - 版权所有高考资源网