收藏 分享(赏)

2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx

上传人:a**** 文档编号:517688 上传时间:2025-12-09 格式:DOCX 页数:9 大小:36.06KB
下载 相关 举报
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第1页
第1页 / 共9页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第2页
第2页 / 共9页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第3页
第3页 / 共9页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第4页
第4页 / 共9页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第5页
第5页 / 共9页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第6页
第6页 / 共9页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第7页
第7页 / 共9页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第8页
第8页 / 共9页
2022年高考数学一轮复习 高考大题专项练一 高考中的函数与导数(含解析)新人教A版(理).docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考大题专项练一高考中的函数与导数一、非选择题1.已知函数f(x)=ln x-x+1x-1.(1)讨论f(x)的单调性,并证明f(x)有且仅有两个零点;(2)设x0是f(x)的一个零点,证明曲线y=ln x在点A(x0,ln x0)处的切线也是曲线y=ex的切线.答案:(1)解f(x)的定义域为(0,1)(1,+).因为f(x)=1x+2(x-1)20,所以f(x)在区间(0,1),(1,+)内单调递增.因为f(e)=1-e+1e-10,所以f(x)在区间(1,+)内有唯一零点x1,即f(x1)=0.又01x11,f1x1=-lnx1+x1+1x1-1=-f(x1)=0,故f(x)在区间(0,

2、1)内有唯一零点1x1.综上,f(x)有且仅有两个零点.(2)证明因为1x0=e-lnx0,故点B-lnx0,1x0在曲线y=ex上.由题设知f(x0)=0,即lnx0=x0+1x0-1,故直线AB的斜率k=1x0-lnx0-lnx0-x0=1x0-x0+1x0-1-x0+1x0-1-x0=1x0.曲线y=ex在点B-lnx0,1x0处切线的斜率是1x0,曲线y=lnx在点A(x0,lnx0)处切线的斜率也是1x0,所以曲线y=lnx在点A(x0,lnx0)处的切线也是曲线y=ex的切线.2.已知函数f(x)=emx-ln x-2.(1)若m=1,证明:存在唯一实数t12,1,使得f(t)=0

3、;(2)求证:存在0m0.答案:证明(1)当m=1时,f(x)=ex-lnx-2,f(x)=ex-1x,x0.显然f(x)在区间(0,+)内单调递增且图象是连续的,又f120,故存在唯一实数t12,1,使得f(t)=0.(2)f(x)=memx-1x=memx-1mx.由0m2-1t+t时,f(x0)0.取k=2-1t+t0,故当m(ek,1)时成立,因此,存在0m0.3.(2020全国,理21)已知函数f(x)=ex+ax2-x.(1)当a=1时,讨论f(x)的单调性;(2)当x0时,f(x)12x3+1,求a的取值范围.解:(1)当a=1时,f(x)=ex+x2-x,f(x)=ex+2x-

4、1.故当x(-,0)时,f(x)0.所以f(x)在(-,0)单调递减,在(0,+)单调递增.(2)f(x)12x3+1等价于12x3-ax2+x+1e-x1.设函数g(x)=12x3-ax2+x+1e-x(x0),则g(x)=-12x3-ax2+x+1-32x2+2ax-1e-x=-12xx2-(2a+3)x+4a+2e-x=-12x(x-2a-1)(x-2)e-x.若2a+10,即a-12,则当x(0,2)时,g(x)0.所以g(x)在(0,2)单调递增,而g(0)=1,故当x(0,2)时,g(x)1,不合题意.若02a+12,即-12a12,则当x(0,2a+1)(2,+)时,g(x)0.

5、所以g(x)在(0,2a+1),(2,+)单调递减,在(2a+1,2)单调递增.由于g(0)=1,所以g(x)1当且仅当g(2)=(7-4a)e-21,即a7-e24.所以当7-e24a12时,g(x)1.若2a+12,即a12,则g(x)12x3+x+1e-x.由于07-e24,12,故由可得12x3+x+1e-x1.故当a12时,g(x)1.综上,a的取值范围是7-e24,+.4.(2020全国,理21)设函数f(x)=x3+bx+c,曲线y=f(x)在点f12,f12处的切线与y轴垂直.(1)求b;(2)若f(x)有一个绝对值不大于1的零点,证明:f(x)所有零点的绝对值都不大于1.答案

6、:(1)解f(x)=3x2+b,依题意得f12=0,即34+b=0.故b=-34.(2)证明由(1)知f(x)=x3-34x+c,f(x)=3x2-34.令f(x)=0,解得x=-12或x=12.f(x)与f(x)的情况为:x-,-12-12-12,121212,+f(x)+0-0+f(x)c+14c-14因为f(1)=f-12=c+14,所以当c14时,f(x)只有小于-1的零点.由题设可知-14c14.当c=-14时,f(x)只有两个零点-12和1.当c=14时,f(x)只有两个零点-1和12.当-14c0,故有lnxx=1-t.令g(x)=lnxx,则g(x)=1-lnxx2.由g(x)

7、0,得0xe;由g(x)e.故g(x)在区间(0,e)内单调递增,在区间(e,+)内单调递减.因此,g(x)max=g(e)=1e,所以g(x)的值域为-,1e,要使得方程f(x)=1无实数根,则1-t1e,即t0,f(x)0恒成立.不妨取x=1,有f(1)=et(1+t-e1-t)0.而当t1时,f(1)0,故t0时,f(x)=etx1+tx-e(1-t)xex21+x2-ex2.而当x0时,有ex1+x,故1+x2-ex20,所以f(x)0.所以f(x)在区间(0,+)内单调递减,故当t12时满足题意.当12t1时,01-t1,即11-tlnt1-t0.令h(x)=1+tx-e(1-t)x

8、,则h(0)=0,h(x)=t-(1-t)e(1-t)x=(1-t)t1-t-e(1-t)x.当0x0,此时,h(x)h(0)=0,则当0x0,故f(x)在区间0,11-tlnt1-t内单调递增.与题设矛盾,不符合题意,舍去.所以,当t12时,函数f(x)在区间(0,+)内是减函数.6.已知f(x)=ax-ln x,x(0,e,g(x)=lnxx,其中e是自然对数的底数,aR.(1)讨论当a=1时,函数f(x)的单调性和极值;(2)求证:在(1)的条件下,f(x)g(x)+12;(3)是否存在正实数a,使f(x)的最小值是3?若存在,求出a的值;若不存在,请说明理由.答案:(1)解当a=1时,

9、f(x)=x-lnx,f(x)=1-1x=x-1x.当0x1时,f(x)0,此时f(x)单调递减;当10时,此时f(x)单调递增.f(x)的极小值为f(1)=1.(2)证明f(x)的极小值为1,f(x)在区间(0,e上的最小值为1,即f(x)min=1.又g(x)=1-lnxx2,当0x0,g(x)在区间(0,e上单调递增.g(x)max=g(e)=1e12,在(1)的条件下,f(x)g(x)+12.(3)解假设存在正实数a,使f(x)=ax-lnx(x(0,e)有最小值3,则f(x)=a-1x=ax-1x.当01a0,b0,a1,b1).(1)设a=2,b=12.求方程f(x)=2的根;若对

10、于任意xR,不等式f(2x)mf(x)-6恒成立,求实数m的最大值;(2)若0a1,函数g(x)=f(x)-2有且只有1个零点,求ab的值.解:(1)因为a=2,b=12,所以f(x)=2x+2-x.方程f(x)=2,即2x+2-x=2,亦即(2x)2-22x+1=0,所以(2x-1)2=0,即2x=1,解得x=0.由条件知f(2x)=22x+2-2x=(2x+2-x)2-2=(f(x)2-2.因为f(2x)mf(x)-6对于xR恒成立,且f(x)0,所以m(f(x)2+4f(x)对于xR恒成立.而(f(x)2+4f(x)=f(x)+4f(x)2f(x)4f(x)=4,且(f(0)2+4f(0

11、)=4,所以m4,故实数m的最大值为4.(2)因为函数g(x)=f(x)-2有且只有1个零点,而g(0)=f(0)-2=a0+b0-2=0,所以0是函数g(x)的唯一零点.因为g(x)=axlna+bxlnb,又由0a1知lna0,所以g(x)=0有唯一解x0=logba-lnalnb.令h(x)=g(x),则h(x)=(axlna+bxlnb)=ax(lna)2+bx(lnb)2,从而对任意xR,h(x)0,所以g(x)=h(x)是(-,+)内的增函数.于是当x(-,x0)时,g(x)g(x0)=0.因而函数g(x)在区间(-,x0)内是减函数,在区间(x0,+)内是增函数.下证x0=0.若

12、x00,则x0x020,于是gx02aloga2-2=0,且函数g(x)在以x02和loga2为端点的闭区间上的图象不间断,所以在x02和loga2之间存在g(x)的零点,记为x1.因为0a1,所以loga20.又x020,所以x10,同理可得,在x02和logb2之间存在g(x)的非0的零点,矛盾.因此,x0=0.于是-lnalnb=1,故lna+lnb=0,所以ab=1.8.已知函数f(x)=sin x-ln(1+x),f(x)为f(x)的导数.证明:(1)f(x)在区间-1,2存在唯一极大值点;(2)f(x)有且仅有2个零点.答案:证明(1)设g(x)=f(x),则g(x)=cosx-1

13、1+x,g(x)=-sinx+1(1+x)2.当x-1,2时,g(x)单调递减,而g(0)0,g20;当x,2时,g(x)0.所以g(x)在区间(-1,)内单调递增,在区间,2内单调递减,故g(x)在区间-1,2内存在唯一极大值点,即f(x)在区间-1,2内存在唯一极大值点.(2)f(x)的定义域为(-1,+).()当x(-1,0时,由(1)知,f(x)在区间(-1,0)内单调递增,而f(0)=0,所以当x(-1,0)时,f(x)0,故f(x)在区间(-1,0)内单调递减.又f(0)=0,从而x=0是f(x)在区间(-1,0上的唯一零点.()当x0,2时,由(1)知,f(x)在区间(0,)内单调递增,在区间,2内单调递减,而f(0)=0,f20;当x,2时,f(x)0,所以当x0,2时,f(x)0.从而,f(x)在区间0,2上没有零点.()当x2,时,f(x)0,f()1,所以f(x)0,从而f(x)在区间(,+)内没有零点.综上,f(x)有且仅有2个零点.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 数学

Copyright@ 2020-2024 m.ketangku.com网站版权所有

黑ICP备2024021605号-1