1、第3课时 导数的综合应用课堂考点突破 分层探究考点一 不等式的证明互动讲练型考向一:构造函数法例1设a为实数,函数f(x)ex2x2a,xR.(1)求f(x)的单调区间与极值;(2)求证:当aln 21且x0时,exx22ax1.类题通法待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,利用导数研究其单调性,借助所构造函数的单调性即可得证考向二:分拆函数法例2已知函数f(x)eln xax(aR)(1)讨论f(x)的单调性;(2)当ae时,证明:xf(x)ex2ex0.悟技法不等式恒成立问题的求解策略(1)已知不等式f(x)0(为实参数)对任意的xD恒成立,求参数的取值范
2、围利用导数解决此类问题可以运用分离参数法(2)如果无法分离参数,可以考虑对参数或自变量进行分类讨论求解,如果是二次不等式恒成立的问题,可以考虑二次项系数与判别式的方法(a0,0或a0,0)求解悟技法判断函数零点个数的3种方法直接法令f(x)0,则方程解的个数即为零点的个数画图法转化为两个易画出图象的函数,看其交点的个数定理法 利用零点存在性定理判定,可结合最值、极值去解决考向二:已知零点存在情况求参数范围例52020全国卷已知函数f(x)exa(x2)(1)当a1时,讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围悟技法已知函数(方程)零点的个数求参数范围(1)函数在定义域上单调,满足零点存在性定理(2)若函数不是严格单调函数,则求最小值或最大值结合图象分析(3)分离参数后,数形结合,讨论参数所在直线与函数图象交点的个数4已知函数f(x)exaxa(aR且a0)(1)若f(0)2,求实数a的值,并求此时f(x)在2,1上的最小值;(2)若函数f(x)不存在零点,求实数a的取值范围