1、1.3.1三角函数的周期性金陵中学 金凤义【教学目标】(1)了解周期现象在现实中广泛存在,感受周期现象对实际工作的意义;(2)了解周期函数的概念,会判断一些简单的、常见的函数的周期性,并会求一些简单三角函数的周期;(3)培养及渗透数形结合思想,培养辩证唯物主义观点(一)情境引入1问题:(1)今天是星期二,则过了七天是星期几?过了十四天呢?(2)物理学中的单摆振动、圆周运动中质点运动,规律如何呢?2我们学过的函数中哪些函数也具有这种“周而复始”的基本特征呢?怎样从数学的角度研究函数的周期现象呢?(二)意义建构 由单位圆中的三角函数线可知,正、余弦函数值的变化呈现出周期现象,每当角增加(或减少)2
2、,所得角的终边与原来角的终边相同,故两角的正、余弦函数值也分别相同即有sin(2x)sinx,cos(2x)cosx,正弦函数和余弦函数所具有的这种性质称为周期性(三)数学理论 一般地,对于函数f(x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足f(xT)f(x),那么函数f(x)就叫做周期函数,非零常数T叫做这个函数的周期对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期(四)数学应用 例1 课本P26例2 T是ysinx的周期吗?试证明你的结论例3 已知f(xT)f(x)(T为常数,T0),求证f(x2T)f(x)例4
3、 证明f(x)sinx(xR)的最小正周期是2例5 求函数y3cosx的周期例6 求ysin2x的周期例8 求yAsin(x)的周期(其中A,为常数,且A0,0,xR)(六)课堂小结(回顾反思)(七)课堂巩固与课后作业(略)【课堂教学设计说明】1此教学方案是按照“教师为主导,学生为主体”的原则,以“感受理解、思考运用、探究拓展”为主线而设计的教师通过为学生创设问题情境,激发学生的求知欲,指引探索的途径,引导学生不断地提出新问题,解决新问题2函数周期性概念的教学是本节课的重点,也是本节课的难点概念教学是中学数学教学的一项重要内容,既不能因其易而轻视也不能因其难而回避概念教学应面向全体学生,但由于
4、函数周期的概念比较抽象,所以学生对它的认识不可能一下子就十分深刻因此,进行概念教学时,除了逐字逐句分析,还要通过不同的例题,让学生暴露出问题,通过老师的引导使学生对概念的理解逐步深入2.4向量的数量积一、问题情景sF一个物体在力F 的作用下产生的位移s,且F与s的夹角为,那么力F 所做的功应当怎样计算?其中力F 和位移s 是向量,是F 与s 的夹角,而功是数量.数量叫做力F 与位移s的数量积物理上力所做的功实际上是将力正交分解,只有在位移方向上的力做功sF,过点B作垂直于直线OA,垂足为,则|b|cosOABabOABab|b|cos叫向量b 在a 方向上的投影为锐角时,|b|cos0为钝角时
5、,|b|cos0为直角时,|b|cos=0BOAab平面向量的数量积的定义已知两个非零向量a 和b,它们的夹角为,我们把数量叫做a 与b 的数量积(或内积),记作a b,即规定:零向量与任意向量的数量积为0,即0(1)两向量的数量积是一个数量,而不是向量,符号由夹角决定;(3)a b不能写成ab,ab表示向量的另一种运算(2)一种新的运算法则,以前所学的运算律、性质不一定适合数学理论向量的夹角两个非零向量和,作,与反向OABOA与同向OABB则叫做向量和的夹角记作与垂直,OAB注意:在两向量的夹角定义中,两向量必须是“共起点”的,过点B作垂直于直线OA,垂足为,则|b|cosOABabOABa
6、b定义:|b|cos叫向量b 在a 方向上的投影为锐角时,|b|cos0为钝角时,|b|cos0为直角时,|b|cos=0BOAab投影的概念及两个向量的数量积的性质两个向量数量积的性质:(1)e a=a e=|a|cos(2)ab a b=0(判断两向量垂直的依据)(3)当a 与b 同向时,a b=|a|b|,当a 与b 反向时,a b=|a|b|特别地(4)(5)a b|a|b|数学应用2.判断下列各题是否正确:1若a=0,则对任一向量b,有a b=02若a 0,则对任一非零向量b,有a b03若a 0,ab=0,则b=04若ab=0,则ab中至少有一个为06若a0,a b=a c,则b=c5对任意向量 a 有引入方法探索诸如等角都是较为特殊的角,如何求它们的三角函数值?方法:1、计算器2、查表在实际生活及科研中必须要保证每一步计算都非常精确才能不会造成不必要的损失和后果!但是:如何求的精确值?分析:问题:由图可知:设建构数学这种“算两次”的方法是一种重要的数学方法,也称做富比尼(G.Fubini)原理注:1、公式中两边的符号正好相反(一正一负)2、式子右边同名三角函数相乘再加减,且余弦在前正弦在后。数学应用例1 用两角和的(差)的余弦公式证明下列诱导公式: