1、第三章概率3.1事件与概率3.1.3频率与概率课时跟踪检测A组基础过关1下列说法:频率反映随机事件的频繁程度,概率反映随机事件发生的可能性大小;做n次随机试验,事件A发生m次,则事件A发生的频率就是事件的概率;频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;频率是概率的近似值,而概率是频率的稳定值其中正确的个数是()A1B2C3D4解析:均正确答案:C2气象台预报“本市明天降雨概率是70%”,以下理解正确的是()A本市明天将有70%的地区降雨B本市明天将有70%的时间降雨C明天出行不带雨具肯定淋雨D明天出行不带雨具淋雨的可能性很大解析:概率表示事件发生的可能性答案
2、:D3给出下列三个命题,其中正确命题的个数为()设有一批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;做7次抛硬币的试验,结果3次出现正面,因此出现正面的概率是;随机事件发生的频率就是这个随机事件发生的概率A0个B1个C2个D3个解析:频率是事件发生的次数m与试验次数n的比值;当n很大时,可以将事件发生的频率作为事件发生的概率的近似值故选A答案:A4下列结论正确的是()A事件A的概率P(A)必有0P(A)1B事件A的概率P(A)0.999,则事件A是必然事件C用某种药物对患有胃溃疡的500名病人治疗,结果对380人有明显的疗效,现有胃溃疡的病人服用此药,则估计有明显疗效的可
3、能性为76%D某奖券中奖率为50%,则某人购买此券10张,一定有5张中奖解析:A不正确,因为0P(A)1;若A是必然事件,则P(A)1,故B不正确;对于D,奖券中奖率为50%,若某人购买此券10张,则可能会有5张中奖,所以D不正确故选C答案:C5一个容量为100的样本,其数据的分组与各组的频数如下:组别(0,10(10,20(20,30(30,40(40,50(50,60(60,70频数1213241516137则样本数据落在(10,40上的频率为()A0.13B0.39C0.52 D0.64解析:(10,40包含(10,20,(20,30,(30,40三部分,所以数据在(10,40的频数有1
4、3241552,由fn(A)可得频率为0.52.故选C答案:C6某人捡到不规则形状的五面体石块,他在每个面上作了记号,投掷了100次,并且记录了每个面落在桌面上的次数(如下表)如果再投掷一次,请估计石块的第4面落在桌面上的概率约是_.石块的面12345频数3218151322解析:石块的第4面落在桌面上的次数为13,其概率约为P0.13.答案:0.137在一个试验中,一种血清被注射到500只豚鼠体内,最初,这些豚鼠中150只有圆形细胞,250只有椭圆形细胞,100只有不规则形状细胞,被注射这种血清之后,没有一个具有圆形细胞的豚鼠被感染,50个具有椭圆形细胞的豚鼠被感染,具有不规则形状细胞的豚鼠
5、全部被感染,根据试验结果,估计具有(1)圆形细胞的豚鼠被感染的概率为_;(2)椭圆形细胞的豚鼠被感染的概率为_;(3)不规则形状细胞的豚鼠被感染的概率为_解析:(1)记“具有圆形细胞的豚鼠被感染”为事件A,则由题意可知A为不可能事件,P(A)0.(2)记“具有椭圆形细胞的豚鼠被感染”为事件B,则由题意得P(B)0.2.(3)记“具有不规则形状细胞的豚鼠被感染”为事件C,则由题意可知,C为必然事件,P(C)1.答案:(1)0(2)0.2(3)18对某电视机厂生产的电视机进行抽样检测的数据如下:抽取台数501002003005001 000优等品数4092192285478954(1)计算表中优等
6、品的各个频率;(2)该厂生产的电视机优等品的概率约是多少?解:(1)优等品的各个频率分别为:0.8,0.92,0.96,0.95,0.956,0.954.(2)由以上数据可得优等品的概率约为0.95.B组技能提升1有100张卡片(从1号到100号),从中任取1张,取到卡号是6的倍数的概率为()ABCD解析:从1号到100号中卡号是6的倍数的有16张,概率为,故选A答案:A2某市交警部门在调查一起车祸的过程中,所有的目击人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车,乙公司有3 0
7、00辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆比较合理()A甲公司 B乙公司C甲与乙公司 D以上都对解析:由题可判断得甲公司桑塔纳车的概率为0.03,乙公司桑塔纳车的概率为0.97.由极大似然法可得,故选B答案:B3一对夫妇前两胎生的全是女孩,则第三胎生女孩的概率为_答案:4某学校为了解学生数学课程的学习情况,在1 000名学生中随机抽取200名,并统计这200名学生的某次数学考试成绩,得到了样本的频率分布直方图(如图)根据频率分布直方图可估计这1 000名学生在该次数学考试中成绩不低于60分的学生数是_解析:由频率分布直方图可知成绩不低于60分的学生的频率为:
8、0024100.028100.020100.008100.8,学生的人数为1 0000.8800.答案:8005为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170185 cm之间的概率解:(1)样本中男生人数为40,由分层抽样比例为10%估计全校男生人数为400.(2)由统计图知,样本中身高在170185 cm之间的学生有141343135(人),样本容量为70,所以样本中学生身高在170185 cm之间的频率f0.5,故由f估计该校学生身高在170185 cm之间的概率P10.5.
9、6(2019北京卷,节选)改革开放以来,人们的支付方式发生了巨大转变近年来,移动支付已成为主要支付方式之一为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:支付金额(元)支付方式(0,1 000(1 000,2 000大于2 000仅使用A18人9人3人仅使用B10人14人1人求:从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率解:由题意知,样本中仅使用A的学生有189330(人),仅使用B的学生有1014125(人),A,B两种支付方式都不使用的学生有5人故样本中A,B两种支付方式都使用的学生有1003025540(人)所以从全校学生中随机抽取1人,该学生上个月A,B两种支付方式都使用的概率估计为0.4.