1、1.2应用举例测量角度 学习目标 能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题. 学习过程 一、课前准备复习1:在中,已知,且,求.复习2:设的内角A,B,C的对边分别为a,b,c,且A=,求的值.二、新课导学 典型例题例1. 如图,一艘海轮从A出发,沿北偏东75的方向航行67.5 n mile后到达海岛B,然后从B出发,沿北偏东32的方向航行54.0 n mile后达到海岛C.如果下次航行直接从A出发到达C,此船应该沿怎样的方向航行,需要航行多少距离?(角度精确到0.1,距离精确到0.01n mile)(分析:首先由三角形的内角和定理求出角ABC,然后用余弦定理算出A
2、C边,再根据正弦定理算出AC边和AB边的夹角CAB. )例2. 某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船? 动手试试练1. 甲、乙两船同时从B点出发,甲船以每小时10(1)km的速度向正东航行,乙船以每小时20km的速度沿南60东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.练2. 某渔轮在A处测得在北45的C处有一鱼群,离渔轮9海里,并发现鱼群正沿南75东的方向以
3、每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上鱼群?三、总结提升 学习小结1. 已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.;2已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解. 知识拓展已知ABC的三边长均为有理数,A=,B=,则是有理数,还是无理数?因为,由余弦定理知为有理数,所以为有理数. 学习评价 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 当堂检测(时量:5分钟 满分:10分)计分:1.
4、从A处望B处的仰角为,从B处望A处的俯角为,则,的关系为( ).A B= C+= D+=2. 已知两线段,若以、为边作三角形,则边所对的角A的取值范围是( ).A B C D3. 关于的方程有相等实根,且A、B、C是的三个内角,则三角形的三边满足( ).A B C D4. ABC中,已知a:b:c=(+1) :(-1): ,则此三角形中最大角的度数为 .5. 在三角形中,已知:A,a,b给出下列说法:(1)若A90,且ab,则此三角形不存在 (2)若A90,则此三角形最多有一解(3)若A90,且a=bsinA,则此三角形为直角三角形,且B=90(4)当A90,ab时三角形一定存在(5)当A90,且bsinAab时,三角形有两解其中正确说法的序号是 . 课后作业 1. 我舰在敌岛A南偏西相距12海里的B处,发现敌舰正由岛沿北偏西的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?