1、第二章2.5第1课时一、选择题1设等比数列an的前n项和Sn,已知a12,a24,那么S10等于()A2102B292C2102D2112答案D解析q2,S102(2101)2112,选D2等比数列an的前n项和Sn3na,则a的值为()A3B0C1D任意实数答案C解析S1a13a,S2S1a232a3a6,S3S2a333a32a18,所以a1.3设数列an是等比数列,其前n项和为Sn,且S33a3,则公比q的值为()ABC1或D1或答案C解析当q1时,S33a13a3符合题意;当q1时,S33a1q2.a10,1q33q2(1q)由1q0,两边同时约去1q,得1qq23q2,即2q2q10
2、,解得q.综上,公比q1,或q.4已知an是等比数列,a22,a5,则a1a2a2a3anan1()A16(14n)B16(12n)C(14n)D(12n)答案C解析q3,q.anan14()n14()n252n,故a1a2a2a3a3a4anan123212123252n(14n)5(2014大纲全国卷文,8)设等比数列an的前n项和为Sn.若S23,S415,则S6()A31B32C63D64答案C解析解法1:由条件知:an0,且q2.a11,S663.解法2:由题意知,S2,S4S2,S6S4成等比数列,即(S4S2)2S2(S6S4),即1223(S615),S663.6已知等比数列前
3、20项和是21,前30项和是49,则前10项和是()A7B9C63D7或63答案D解析由S10,S20S10,S30S20成等比数列,(S20S10)2S10(S30S20),即(21S10)2S10(4921),S107或63.二、填空题7设an是公比为正数的等比数列,若a11,a516,则数列an的前7项和为_答案127解析设数列an的公比为q(q0),则有a5a1q416,q2,数列的前7项和为S7127.8已知Sn为等比数列an的前n项和,Sn93,an48,公比q2,则项数n_.答案5解析由Sn93,an48,公比q2,得2n32n5.三、解答题9已知an是公差不为零的等差数列,a1
4、1,且a1,a3,a9成等比数列(1)求数列an的通项公式; (2)求数列2an的前n项和Sn.解析(1)由题设,知公差d0,由a11,a1,a3,a9成等比数列得,解得d1,或d0(舍去)故an的通项an1(n1)1n.(2)由(1)知2an2n,由等比数列前n项和公式,得Sn222232n2n12.10等比数列an的前n项和为Sn,已知S1,S3,S2成等差数列(1)求an的公比q;(2)若a1a33,求Sn.解析(1)S1,S3,S2成等差数列,2S3S1S2,q1不满足题意a1,解得q.(2)由(1)知q,又a1a3a1a1q2a13,a14.Sn1()n.一、选择题1若等比数列an各
5、项都是正数,a13,a1a2a321,则a3a4a5的值为()A21B42C63D84答案D解析a1a2a321,a1(1qq2)21,又a13,1qq27,an0,q0,q2,a3a4a5q2(a1a2a3)222184.2等比数列an中,已知前4项之和为1,前8项和为17,则此等比数列的公比q为()A2B2C2或2D2或1答案C解析S41,S8S4q4S41q417q2.3在各项为正数的等比数列中,若a5a4576,a2a19,则a1a2a3a4a5的值是()A1 061B1 023C1 024D268答案B解析由a4(q1)576,a1(q1)9,q364,q4,a13,a1a2a3a4
6、a51 023.4设an是由正数组成的等比数列,Sn为其前n项和,已知a2a41,S37,则S5()ABCD答案B解析an是正数组成的等比数列,a31,又S37,消去a1得,7,解之得q,a14,S5.二、填空题5设等比数列an的前n项和为Sn,若a11,S64S3,则a4_.答案3解析若q1时,S33a1,S66a1,显然S64S3,故q1,4,1q34,q33.a4a1q33.6已知等比数列an共有2n项,其和为240,且奇数项的和比偶数项的和大80,则公比q_.答案2解析由题意,得,解得S奇80,S偶160,q2.三、解答题7已知各项均为正数的等比数列an的前n项和为Sn,S3,首项a1
7、.(1)求数列an的通项公式an;(2)令bn6n61log2an,求数列bn的前n项和Tn.解析(1)由已知S3a1a2a3,qq2.q2q60,(q3)(q2)0q2或q3.(舍)ana1qn12n2.(2)bn6n61log22n26n61n27n63.bnbn17n637n7637,数列an是等差数列又b156,Tnnb1n(n1)756nn(n1)7n2n.8(2014北京文,15)已知an是等差数列,满足a13,a412,数列bn满足b14,b420,且bnan为等比数列(1)求数列an和bn的通项公式;(2)求数列bn的前n项和解析(1)设等差数列an的公差为d,由题意得d3.所以ana1(n1)d3n(n1,2,)设等比数列bnan的公比为q,由题意得q38,解得q2.所以bnan(b1a1)qn12n1,从而bn3n2n1(n1,2,)(2)由(1)知bn3n2n1(n1,2,)数列3n的前n项和为n(n1),数列2n1的前n项和为12n1.所以,数列bn的前n项和为n(n1)2n1.