收藏 分享(赏)

《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc

上传人:高**** 文档编号:421940 上传时间:2024-05-27 格式:DOC 页数:8 大小:188.50KB
下载 相关 举报
《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc_第1页
第1页 / 共8页
《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc_第2页
第2页 / 共8页
《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc_第3页
第3页 / 共8页
《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc_第4页
第4页 / 共8页
《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc_第5页
第5页 / 共8页
《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc_第6页
第6页 / 共8页
《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc_第7页
第7页 / 共8页
《精品推荐》高中物理竞赛教程:5.3.2 量子力学初步 WORD版含解析.doc_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

1、3、2 量子力学初步321、 物质的二象性光的二象性:众所周知,光在许多情况下(干涉、偏振、衍射等)表现为波动性,但在有些情况下(如光电效应、黑体辐射等)又表现为粒子字。因而对光完整的认识应是光具有波粒二象性。一个光子的能量: E=hv v是光的频率,h是普朗克常数光子质量: 光子动量: 德布罗意波德布罗意把光的波粒二象性推广到实物粒子。他认为,波粒二象性是一切微观粒子共有的特性。第一个实物粒子在自由运动时所具有的能量为E、动量为p,这样的自由粒子必定对应一个振动频率为v、波长为的平面简谐波。这两组特征量之间的关系仍是自由的实物粒子所对应的平面简谐波常称为物质波或德布罗意波,它的客观真实性已为

2、许多实验所证实。物质波的物理意义究竟是什么?波是振动状态在空间传播形成的,波在空间某处振动状态的强弱可用该处振幅的平方米来表征。对于光波,若某处振幅平方较大,则该处的光较强,光子数较多,这也意味着光子在该处出现的可能性较大,物质波也是如此。物质波若在某处振幅的平方较大,则实物粒子在该处出现的可能性较大,可能性的大小可定量地用数学上的概率大来表述,物质波各处振幅的平方便与粒子在该处出现的概率联系起来,这就是物质波的物理意义。例1、试估算热中子的德布罗意波长。(中子的质量)热中子是指在室温下(T=300K)与周围处于热平衡的中子,它的平均动能它的方均根速率,相应的德布罗意波长这一波长与X射线的波长

3、同数量级,与晶体的晶面距离也有相同的数量级,所以也可以产生中子衍射。322、海森伯测不准原理设一束自由粒子朝z轴方向运动,每一个粒子的质量为m,速度为v,沿z轴方向的动量P=mv。这一束自由粒子对应一个平面简谐波,在与z轴垂直的波阵面上沿任何一个方向(记为x方向)的动量取精确值。波阵面上各处振幅相同,每一个粒子在各处出现的概率相同,这意味着粒子的x位置坐标可取任意值,或者说粒子的x位置坐标不确定范围为。为了在波阵面的某个x位置“抓”到一个粒子,设想用镊子去夹粒子。实验上可等效地这样去做:在波阵面的前方平行地放置一块挡板,板上开一条与x轴垂直的狭缝,狭缝相当于一个并合不够严实的镊子。如果狭缝的宽

4、度为x,那么对于通过狭缝的粒子可以判定它的x位置不确定范围为x。x越小,通过狭缝粒子以x位置就越是确定。然而问题在于物质波与光波一样。通过狭缝即会发生衍射,出射波会在缝的上、下两侧散开,或者说通过狭缝的粒子既有可能继续沿x轴方向运动,也有可能朝x轴正方向或负方向偏转地向前运动。偏向的粒子必对应地取得x方向的非零动量,即有,这表明出射粒子在x方向的动量不再一致地为,因此x方向动量有不确定性,不确定范围可记为。缝越窄,x越小,粒子的x位置越接近准确,但衍射效应越强,越大,粒子的x方向动量值越不准确。反之,缝越宽,x越大,粒子的x位置越不准确,但衍射效应越弱,越小,粒子的x方向动量值越准确。总之,由

5、于波动性,使粒子的x位置和x方向动量不可能同时精确测量,这就是测不准原理。由近代量子理论可导出x与之间的定量关系,这一关系经常可近似地表述为:h对y和z方向,相应地有:, 有时作为估算,常将上述三式再近似取为:在经典力学中,运动粒子任意时刻的位置和动量或者说速度都可以精确测定,粒子的运动轨道也就可以确定。在量子理论中,运动粒子在任意时刻的位置和动量或者说速度不能同时精确测定,粒子的运动轨道也就无法确定。微观世界中,粒子的运动轨道既然不可测,也就失去了存在的意义。如在经典力学中,可以说氢原子中的电子绕核作圆轨道或椭圆轨道运动。在量子力学中,只能说粒子在核周围运动,某时刻电子的位置可能在这里,也可

6、能在那里。描述这种可能性的概率有一个确定的分布。即使在这一时刻于某一位置“捕捉”到了该电子,也不能预言下一时刻该电子会出现在什么位置,因为电子的运动没有可供预言的轨道。经典力学中一个粒子可静止在某一确定的位置,量子力学则否定了这种可能性。据测不准原理,如果一个粒子在x、y、z坐标完全确定,即x=y=z=0,那么它的x、y、z方向动量均不可为零,否则,与上面给出的关系式显然会发生矛盾。例2、实验测定原子核线度的数量级为。试应用测不准原理估算电子如被束缚在原子核中时的动能。从而判断原子核由质子和电子组成是否可能。取电子在原子核中位置的不确定量,由测不准原理得由于动量的数值不可能小于它的不确定量,故

7、电子动量考虑到电子在此动量下有极高的速度,由相对论的能量动量公式故 电子在原子核中的动能。理论证明,电子具有这么大的动能足以把原子核击碎,所以,把电子禁锢在原子核内是不可能的,这就否定了原子核是由质子和电子组成的假设。3.2.3 量子力学的基本规律薛定谔方程 波函数是描写微观粒子的基本物理量,波函数所遵从的规律,就是量子力学的基本规律,它将决定粒子函数的特征,从而决定粒子的运动状态。正像在经典力学学里,粒子的位置和动量描写粒子的运动状态,牛顿运动定律决定了粒子的位置和动量如何变化,因而牛顿运动定律是经典力学的基本规律。奥地利物理学家薛定谔(18871961)在1926年找到了遵从的规律,称为薛

8、定谔方程。在应用数学形式描述电子的波粒二象性上,他从麦克斯韦电磁理论得到启发,认为电子的德布罗意波也可以应用类似于光波的方式加以描述。这个方程既描述了电子的波动行为,又蕴涵着粒子性特征。写出并求解薛定谔方程,超出本书的范围。不过,我们可以讨论一下有关结论。波函数必须满足一些物理条件:作为描写粒子运动状态的应是时空坐标的单值函数,变化应是连续的,不能变为无限大,即应有界。这样,薛定谔方程的解,不但成功地解释了玻尔原子理论所能解释的现象,而且能够解释大量玻尔理论所不能解释的现象。玻尔的基本假设,在量子力学里是从理论上推导出来的必然结果。原来,在薛定谔方程中,只有原子中电子具有某些不连续的能量值时,

9、方程的解才满足上述物理条件。由薛定谔方程解中得出的氢原子中电子能量的可能值,正好就是玻尔原子理论给出的值。3.2.4 概率密度与电子云 我们将以原子的稳定态为例,讨论一下由波函数所决定的电子在原子中的概率密度,这波函数就是由薛定谔方程求解出来的。因为是稳定态,所以和时间无关,说明在任何时候,电子出现在任一处的概率密度都相同。例如,氢原子处在基态时,电子经常出现的概率最大的地方,是以原子核为中心的一个球壳,这个球壳的半径为米,这个数值与玻尔原子理论计算出来的基态轨道半径相同,可见,玻尔的原子轨道只不过电子出现概率最大的地方。电子核外的运动情况,通常用电子云来形象地描述。用小黑点的稠密与稀疏,来代

10、表电子核外各处单位体积中出现的概率(即概率密度)的大小,这样就可以画出原子的电子云图。图11-8是氢原子基态的电子云。看一下以核为中心的一层层很薄的球壳中电子出现的概率,在靠近原子核的地方,虽然云雾浓度较大,小黑点稠密,但是靠近原子核的一个薄球壳中包含的小黑点的总数不会很多,即电子出现在这个球壳中的概率不会很大,因为这个球壳的体积较小。在远离原子核的地方,球壳的体积虽然较大,但是小黑点稀疏,因而出现在这个球壳中的概率不会很大。经过计算知道,在半径为米的一薄的球壳中电子出现的概率最大,就是玻尔理论中氢原子基态的轨道半径。3.2.5 量子学的应用和发展量子力学建立后,应用它计算氢原子的光谱,获得巨

11、大成功,其理论计算与实验结果完全符合。量子力学不仅可以正确地解释氢原子光谱,而且,还可以说明复杂原子的构造,解释复杂原子的光谱。这确实表明,量子力学是微观粒子所遵从的规律。在量子力学发展的早期,就认识到它的应用不限于电子,对其它粒子也一样适用。1927年,美国物理学家康登应用量子力学解释了衰变现象。这又称为隧道效应。在粒子放射体中粒子被约束在原子核内,其能量小于核对它的结束能量势垒,按照经典理论,粒子是不可能穿出原子核的。但是,按照量子力学,粒子有穿过势垒的概率。这个概率即使很小,但不为零。对大量的原子核来说,总会有一小部分原子核的粒子,穿透势垒而发射出来。理论计算为实验数据所证实。量子力学在

12、建立之初,就用于研究分子的结构。美国物理学家和化学家泡利阐明了化学键的本性,就是以量子力学为依据的。比如,对,CO等分子,原子之间的相互作用是量子力学效应。当两个氢原子互相靠近时,它们能量的减小在于相互吸引作用,而这是由于两个原子共享两个电子造成的。和电子波函数的对称性密切相关。量子力学可以算出分子的平衡距离为米,两个氢原子结合成氢分子时释放的能量为4.52电子伏。同样,量子力学也解释了共价键以外的结合键。这里不作具体介绍。凝聚态物理,如液体和固体的构造理论,其导电与导热性能的解释,也是建立在量子力学基础之上的。比如研究电子在晶体中的运动,因为晶体点阵的周期性结构。电子受的力也具有空间的周期性,量子力学能揭示电子在晶体中的运动状态,就像一个原子中的电子可以处在不同的能级上,在固体中,电子可以在不同的能带上,能带有一定的宽度,代表一个能量范围。这就是能带理论。应用能带理论,可以成功地解释金属和半导体的导电特性。在近代,其实际应用几乎随处可见。薛定谔方程是非相对论的,不能应用于高速的微观粒子。1928年,狄拉克建立了相对论的量子力学方程,称为狄拉克方程。它不仅成功地说明电子自旋的存在,而且还证明,对于每一种粒子,都存在相应的反粒子。电子的反粒子带正电,其他性质都和电子相同。1932年,美国物理学家安德森从宇宙射线中发现了正电子,证明了狄拉克理论的正确性,这是基本粒子广泛研究的开始。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3