收藏 分享(赏)

《精品教案推荐》高中数学必修2直线与圆优质教案:两条直线平行与垂直的判定 WORD版含解析.doc

上传人:高**** 文档编号:417762 上传时间:2024-05-27 格式:DOC 页数:5 大小:105.50KB
下载 相关 举报
《精品教案推荐》高中数学必修2直线与圆优质教案:两条直线平行与垂直的判定 WORD版含解析.doc_第1页
第1页 / 共5页
《精品教案推荐》高中数学必修2直线与圆优质教案:两条直线平行与垂直的判定 WORD版含解析.doc_第2页
第2页 / 共5页
《精品教案推荐》高中数学必修2直线与圆优质教案:两条直线平行与垂直的判定 WORD版含解析.doc_第3页
第3页 / 共5页
《精品教案推荐》高中数学必修2直线与圆优质教案:两条直线平行与垂直的判定 WORD版含解析.doc_第4页
第4页 / 共5页
《精品教案推荐》高中数学必修2直线与圆优质教案:两条直线平行与垂直的判定 WORD版含解析.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、两条直线平行与垂直的判定【教学目标】1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.培养和提高学生联系、对应、转化等辩证思维能力.2.通过教学,提倡学生用旧知识解决新问题,注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力.【重点难点】教学重点:掌握两条直线平行、垂直的充要条件,并会判断两条直线是否平行、垂直.教学难点:是斜率不存在时两直线垂直情况的讨论(公式适用的前提条件).【课时安排】1课时【教学过程】导入新课设问(1)平面内不重合的两条直线的位置关系有哪几种?(2)两条直线的倾斜角相等,这两条

2、直线是否平行?反过来是否成立?(3)“=”是“tan=tan”的什么条件?根据倾斜角和斜率的关系,能否利用斜率来判定两条直线平行呢?推进新课新知探究提出问题平面内不重合的两条直线的位置关系有几种?两条直线的倾斜角相等,这两条直线是否平行?反过来是否成立?“=”是“tan=tan”的什么条件?两条直线的斜率相等,这两条直线是否平行?反过来是否成立?l1l2时,k1与k2满足什么关系?l1l2时,k1与k2满足什么关系?活动:教师引导得出平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例.数形结合容易得出结论.注意到倾斜角是90的直线没有斜率,即tan90不存在.注意到倾斜角是90

3、的直线没有斜率.必要性:如果l1l2,如图1所示,它们的倾斜角相等,即1=2,tan1=tan2,即k1=k2.图1充分性:如果k1=k2,即tan1=tan2,01180,02180,1=2.于是l1l2.学生讨论,采取类比方法得出两条直线垂直的充要条件.讨论结果:平面内不重合的两条直线的位置关系有平行和相交,其中垂直是相交的特例.两条直线的倾斜角相等,这两条直线平行,反过来成立.“=”是“tan=tan”的充要条件.两条直线的斜率相等,这两条直线平行,反过来成立.l1l2k1=k2.l1l2k1k2=-1.应用示例例1 已知A(2,3),B(4,0),P(3,),Q(1,2),判断直线BA

4、与P的位置关系,并证明你的结论.解:直线BA的斜率kBA=0.5,直线PQ的斜率kPQ=0.5,因为kBA=kPQ.所以直线BAPQ.变式训练 若A(-2,3),B(3,-2),C(,m)三点共线,则m的值为( )A. B.- C.-2 D.2分析:kAB=kBC,m=.答案:A例2 已知四边形ABCD的四个顶点分别为A(0,0),B(2,-1),C(4,2),D(2,3),试判断四边形ABCD的形状,并给出证明.解:AB边所在直线的斜率kAB=-,CD边所在直线的斜率kCD=-,BC边所在直线的斜率kBC=,DA边所在直线的斜率kDA=.因为kAB=kCD,kBC=kDA,所以ABCD,BC

5、DA.因此四边形ABCD是平行四边形.变式训练 直线l1:ax+3y+1=0,l2:x+(a-2)y+a=0,它们的倾斜角及斜率依次分别为1,2,k1,k2.(1)a=_时,1=150;(2)a=_时,l2x轴;(3)a=_时,l1l2;(4)a=_时,l1、l2重合;(5)a=_时,l1l2.答案:(1) (2)2 (3)3 (4)-1 (5)1.5拓展提升问题:已知P(3,2),Q(3,4)及直线ax+y+3=0.若此直线分别与PQ的延长线、QP的延长线相交,试分别求出a的取值范围.(图2)图2解:直线l:ax+y+3=0是过定点A(0,-3)的直线系,斜率为参变数-a,易知PQ、AQ、AP、l的斜率分别为:kPQ=,kAQ=,kAP=,k1=-a.若l与PQ延长线相交,由图,可知kPQk1kAQ,解得-a-;若l与PQ相交,则k1kAQ或k1kAP,解得a-或a;若l与QP的延长线相交,则kPQk1kAP,解得-a.课堂小结通过本节学习,要求大家:1.掌握两条直线平行的充要条件,并会判断两条直线是否平行.2.掌握两条直线垂直的充要条件,并会判断两条直线是否垂直.3.注意解析几何思想方法的渗透,同时注意思考要严密,表述要规范,培养学生探索、概括能力.4.认识事物之间的相互联系,用联系的观点看问题.作业习题3.1 A组4、5.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3