1、2.2.2反证法学 习 目 标核 心 素 养1了解反证法是间接证明的一种基本方法(重点、易混点)2理解反证法的思考过程,会用反证法证明数学问题(重点、难点) 通过反证法的学习,培养学生的逻辑推理的核心素养.反证法的定义及证题的关键思考1:反证法的实质是什么?提示反证法的实质就是否定结论,推出矛盾,从而证明原结论是正确的思考2:有人说反证法的证明过程既可以是合情推理也可以是一种演绎推理,这种说法对吗?为什么?提示反证法是间接证明中的一种方法,其证明过程是逻辑非常严密的演绎推理1“abCab Dab或ab答案D2用反证法证明“如果ab,那么”,假设的内容应是_答案3用反证法证明“一个三角形不能有两
2、个直角”有三个步骤:ABC9090C180,这与三角形内角和为180矛盾,故假设错误所以一个三角形不能有两个直角假设ABC中有两个直角,不妨设A90,B90.上述步骤的正确顺序为_由反证法的一般步骤可知,正确的顺序应为.4应用反证法推出矛盾的推导过程中,下列选项中可以作为条件使用的有_(填序号)结论的反设;已知条件;定义、公理、定理等;原结论 反证法的“归谬”是反证法的核心,其含义是:从命题结论的假设(即把“反设”作为一个新的已知条件)及原命题的条件出发,引用一系列论据进行正确推理,推出与已知条件、定义、定理、公理等相矛盾的结果用反证法证明否定性命题【例1】已知三个正数a,b,c成等比数列,但
3、不成等差数列求证:,不成等差数列证明假设,成等差数列,则2,即ac24b.a,b,c成等比数列,b2ac,即b,ac24,()20,即.从而abc,与a,b,c不成等差数列矛盾,故,不成等差数列1用反证法证明否定性命题的适用类型结论中含有“不”“不是”“不可能”“不存在”等词语的命题称为否定性命题,此类问题的正面比较模糊,而反面比较具体,适合使用反证法2用反证法证明数学命题的步骤1设SA,SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点,求证:AC与平面SOB不垂直证明假设AC平面SOB,如图,直线SO在平面SOB内,SOAC.SO底面圆O,SOAB.SO平面SAB.平面SAB底面圆O.
4、这显然出现矛盾,所以假设不成立,即AC与平面SOB不垂直用反证法证明唯一性命题【例2】求证方程2x3有且只有一个根证明2x3,xlog23,这说明方程2x3有根下面用反证法证明方程2x3的根是唯一的:假设方程2x3至少有两个根b1,b2(b1b2),则2b13,2b23,两式相除得2b1b21.若b1b20,则2b1b21,这与2b1b21相矛盾若b1b20,则2b1b21,这也与2b1b21相矛盾b1b20,则b1b2.假设不成立,从而原命题得证巧用反证法证明唯一性命题(1)当证明结论有以“有且只有”“当且仅当”“唯一存在”“只有一个”等形式出现的命题时,由于反设结论易于推出矛盾,故常用反证
5、法证明(2)用反证法证题时,如果欲证明命题的反面情况只有一种,那么只要将这种情况驳倒了就可以;若结论的反面情况有多种,则必须将所有的反面情况一一驳倒,才能推断结论成立(3)证明“有且只有一个”的问题,需要证明两个命题,即存在性和唯一性2求证:两条相交直线有且只有一个交点证明假设结论不成立,则有两种可能:无交点或不止一个交点若直线a,b无交点,则ab或a,b是异面直线,与已知矛盾若直线a,b不只有一个交点,则至少有两个交点A和B,这样同时经过点A,B就有两条直线,这与“经过两点有且只有一条直线”相矛盾综上所述,两条相交直线有且只有一个交点 用反证法证明“至多”“至少”问题探究问题1你能阐述一下“
6、至少有一个、至多有一个、至少有n个”等量词的含义吗?提示量词含义至少有一个有n个,其中n1至多有一个有0或1个至少有n个大于等于n个 2.在反证法证明中,你能说出 “至少有一个、至多有一个、至少有n个”等量词的反设词吗?提示量词反设词至少有一个一个也没有至多有一个至少有两个至少有n个至多有n1个【例3】已知a1,求证三个方程:x24ax4a30,x2(a1)xa20,x22ax2a0中至少有一个方程有实数解证明假设三个方程都没有实根,则三个方程中:它们的判别式都小于0,即:即a1,这与已知a1矛盾,所以假设不成立,故三个方程中至少有一个方程有实数解1(变条件)将本题改为:已知下列三个方程x24
7、ax4a30,x2(a1)xa20,x22ax2a0至少有一个方程有实数根,如何求实数a的取值范围?解若三个方程都没有实根,则解得即a1,故三个方程至少有一个方程有实根,实数a的取值范围是.2(变条件)将例题条件改为三个方程中至多有2个方程有实数根,求实数a的取值范围解假设三个方程都有实数根,则即解得即a.所以三个方程中至多有2个方程有实数根时,实数a的取值范围为R.当命题中出现“至少”“至多”“不都”“都不”“没有”“唯一”等指示性词语时,宜用反证法.提醒:对于此类问题,需仔细体会“至少有一个”“至多有一个”等字眼的含义,弄清结论的否定是什么,避免出现证明遗漏的错误.用反证法证题要把握三点:
8、(1)必须先否定结论,对于结论的反面出现的多种可能,要逐一论证,缺少任何一种可能,证明都是不全面的(2)反证法必须从否定结论进行推理,且必须根据这一条件进行论证,否则,仅否定结论,不从结论的反面出发进行论证,就不是反证法(3)反证法的关键是在正确的推理下得出矛盾,这个矛盾可以与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾,但推导出的矛盾必须是明显的1用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是()A有两个内角是钝角B有三个内角是钝角C至少有两个内角是钝角D没有一个内角是钝角C“最多只有一个”的否定是“至少有两个”,故选C.2如果两个实数之和为正数,则这两个数()
9、A一个是正数,一个是负数B两个都是正数C至少有一个正数D两个都是负数C假设两个数分别为x1,x2,且x10,x20,则x1x20,这与两个数之和为正数矛盾,所以两个实数至少有一个正数,故应选C.3已知平面平面直线a,直线b,直线c,baA,ca,求证:b与c是异面直线,若利用反证法证明,则应假设_b与c平行或相交空间中两直线的位置关系有3种:异面、平行、相交,应假设b与c平行或相交4. 设数列an是公比为q的等比数列,Sn是它的前n项和求证:数列Sn不是等比数列证明假设数列Sn是等比数列,则SS1S3,即a(1q)2a1a1(1qq2),因为a10,所以(1q)21qq2,即q0,这与公比q0矛盾所以数列Sn不是等比数列