1、课后限时集训(六十六)古典概型与几何概型建议用时:40分钟一、选择题1(2020全国卷)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A B C DA根据题意作出图形,如图所示,在O,A,B,C,D中任取3点,有10种可能情况,分别为(OAB),(OAC),(OAD),(OBC),(OBD),(OCD),(ABC),(ABD),(ACD),(BCD),其中取到的3点共线有(OAC)和(OBD)2种可能情况,所以在O,A,B,C,D中任取3点,取到的3点共线的概率为,故选A2“上医医国”出自国语晋语八,比喻高贤能治理好国家现把这四个字分别写在四张卡片上,
2、其中“上”字已经排好,某幼童把剩余的三张卡片进行排列,则该幼童能将这句话排列正确的概率是()A B C DA幼童把这三张卡片进行随机排列,基本事件总数n3,该幼童能将这句话排列正确的概率P.故选A3易经是我国古代预测未来的著作,其中同时抛掷三枚古钱币观察正反面进行预测未知,则抛掷一次时出现两枚正面、一枚反面的概率为()A B C DC抛掷三枚古钱币出现的基本事件有:正正正,正正反,正反正,反正正,正反反,反正反,反反正,反反反,共8种,其中出现两正一反的共有3种,故所求概率为.故选C4某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的
3、时刻是随机的,则他等车时间不超过10分钟的概率是()A B C DB如图所示,画出时间轴小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在线段AC或DB上时,才能保证他等车的时间不超过10分钟,根据几何概型的概率计算公式,得所求概率P,故选B5.七巧板是我国古代劳动人民的发明之一,被誉为“东方魔板”,它由五块等腰直角三角形板、一块正方形板和一块平行四边形板组成如图,是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为()A B C DD设图中最小正方形的边长为a,则此点取自阴影部分的概率P.故选D二、填空题6(2019江苏高考)从3名男同学和2名女同学中任
4、选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n10,选出的2名同学中没有女同学包含的基本事件个数:m3,选出的2名同学中至少有1名女同学的概率是p11.7有一个底面半径为1、高为2的圆柱,点O为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P,则点P到点O的距离大于1的概率为 由题意得该圆柱的体积V1222.圆柱内满足点P到点O的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V1 13,所以所求概率P.8.如图所示的茎叶图是甲、乙两人在4次模拟测试中的成绩,其中一个数字被污损,则甲的平
5、均成绩不超过乙的平均成绩的概率为 0.3依题意,记题中被污损的数字为x,若甲的平均成绩不超过乙的平均成绩,则有(8921)(53x5)0,解得x7,即此时x的可能取值是7,8,9,因此甲的平均成绩不超过乙的平均成绩的概率P0.3.三、解答题9已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作试用所给字母列举出所有可能的抽取结果;设M为事件“抽取的2名同学来
6、自同一年级”,求事件M发生的概率解(1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为322,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人(2)从抽取的7名同学中随机抽取2名同学的所有可能结果为A,B,A,C,A,D,A,E,A,F,A,G,B,C,B,D,B,E,B,F,B,G,C,D,C,E,C,F,C,G,D,E,D,F,D,G,E,F,E,G,F,G,共21种由,不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为A,
7、B,A,C,B,C,D,E,F,G,共5种所以,事件M发生的概率P(M).10某学校为担任班主任的教师办理手机语音月卡套餐,为了解通话时长,采用随机抽样的方法,得到该校100位班主任每人的月平均通话时长T(单位:分钟)的数据,其频率分布直方图如图所示,将频率视为概率(1)求图中m的值;(2)估计该校担任班主任的教师月平均通话时长的中位数;(3)在450,500),500,550这两组中采用分层抽样的方法抽取6人,再从这6人中随机抽取2人,求抽取的2人恰在同一组的概率解(1)依题意,根据频率分布直方图的性质,可得:50(m0.004 00.005 00.006 60.001 60.000 8)1
8、,解得m0.002 0.(2)设该校担任班主任的教师月平均通话时长的中位数为t.因为前2组的频率之和为(0.002 00.004 0)500.30.5,所以350t400,由0.30.0050(t350)0.5,得t390.所以该校担任班主任的教师月平均通话时长的中位数为390分钟(3)由题意,可得在450,500)内抽取64人,分别记为a,b,c,d,在500,550内抽取2人,记为e,f ,则6人中抽取2人的取法有:a,b,a,c,a,d,a,e,a,f ,b,c,b,d,b,e,b,f ,c,d,c,e,c,f ,d,e,d,f ,e,f ,共15种等可能的取法其中抽取的2人恰在同一组的
9、有a,b,a,c,a,d,b,c,b,d,c,d,e,f ,共7种取法,所以从这6人中随机抽取的2人恰在同一组的概率P.1在区间0,上随机地取一个数x,则事件“sin x”发生的概率为()A B C DD在0,上,当x时,sin x,故概率为.2如图,B是AC上一点,分别以AB,BC,AC为直径作半圆,从B作BDAC,与半圆相交于D,AC6,BD2,在整个图形中随机取一点,则此点取自图中阴影部分的概率是()A B C DC连接AD,CD,可知ACD是直角三角形,又BDAC,所以BD2ABBC,设ABx(0x3),则有8x(6x),得x2,所以AB2,BC4,由此可得图中阴影部分的面积等于2,故
10、概率P.故选C3甲、乙、丙、丁、戊5名同学参加“论语知识大赛”,决出第1名到第5名的名次甲、乙两名参赛者去询问成绩,回答者对甲说“虽然你的成绩比乙好,但是你俩都没得到第一名”;对乙说“你当然不会是最差的”从上述回答分析,丙是第一名的概率是 因为甲和乙都不可能是第一名,所以第一名只可能是丙、丁或戊,又考虑到所有的限制条件对丙、丁、戊都没有影响,所以这三个人获得第一名是等概率事件,所以丙是第一名的概率是.4已知向量a(2,1),b(x,y)(1)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足ab1的概率;(2)若
11、x,y在连续区间1,6上取值,求满足ab0的概率解(1)将一枚质地均匀的正方体骰子先后抛掷两次,所包含的基本事件总数为6636,由ab1,得2xy1,所以满足ab1的基本事件为(1,1),(2,3),(3,5),共3个故满足ab1的概率为.(2)若x,y在连续区间1,6上取值,则全部基本事件的结果为(x,y)|1x6,1y6满足ab0的基本事件的结果为A(x,y)|1x6,1y6且2xy0画出图象如图所示,矩形的面积为S矩形25,阴影部分的面积为S阴影252421,故满足ab0的概率为.1某展会安排了分别标有序号为“1号”“2号”“3号”的三辆车,等可能的随机顺序前往酒店接嘉宾某嘉宾突发奇想,
12、设计了两种乘车方案方案一:不乘坐第一辆车,若第二辆车的车序号大于第一辆车的车序号,就乘坐此车,否则乘坐第三辆车;方案二:直接乘坐第一辆车记方案一与方案二坐到“3号”车的概率分别为P1,P2,则下列说法错误的是()AP1P2 BP1P2CP1P2 DP1P2B三辆车的出车顺序可能为123,132,213,231,312,321,共6种方案一坐到“3号”车可能为132,213,231,共3种,所以P1;方案二坐到“3号”车可能为312,321,共2种,所以P2.所以P1P2,P1P2,P1P2,故选B2某人有4把钥匙,其中2把能打开门现随机地取1把钥匙试着开门,不能开门的就扔掉,问第二次才能打开门的概率是 如果试过的钥匙不扔掉,这个概率又是 第二次打开门,说明第一次没有打开门,故第二次打开的概率为;如果试过的钥匙不扔掉,这个概率为.