收藏 分享(赏)

2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc

上传人:高**** 文档编号:409550 上传时间:2024-05-27 格式:DOC 页数:14 大小:364KB
下载 相关 举报
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第1页
第1页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第2页
第2页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第3页
第3页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第4页
第4页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第5页
第5页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第6页
第6页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第7页
第7页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第8页
第8页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第9页
第9页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第10页
第10页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第11页
第11页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第12页
第12页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第13页
第13页 / 共14页
2022届高考数学理北师大版一轮复习测评:3-3 利用导数研究函数的极值、最值 WORD版含解析.doc_第14页
第14页 / 共14页
亲,该文档总共14页,全部预览完了,如果喜欢就下载吧!
资源描述

1、温馨提示: 此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。关闭Word文档返回原板块。核心素养测评十五利用导数研究函数的极值、最值(30分钟60分)一、选择题(每小题5分,共25分)1.设函数f(x)=+ln x则()A.x=为f(x)的极大值点B.x=为f(x)的极小值点C.x=2为f(x)的极大值点 D.x=2为 f(x)的极小值点【解析】选D.f(x)=-+=,由f(x)0,得x2,所以f(x)的增区间为,f(x)的减区间为(0,2),所以f(x)只有极小值,极小值点为x=2.2.已知函数f(x)是R上的可导函数,f(x)的导函数f(x)的图像如图,

2、则下列结论正确的是()A.a,c分别是极大值点和极小值点B.b,c分别是极大值点和极小值点C.f(x)在区间(a,c)上是增函数D.f(x)在区间(b,c)上是减函数【解析】选C.由极值点的定义可知,a是极小值点,无极大值点;由导函数的图像可知,函数f(x)在区间(a,+)上是增函数.3.(2020榆林模拟)已知x=2是函数f(x)=x3-3ax+2的极小值点,那么函数f(x)的极大值为()A.15B.16C.17D.18【解析】选D.因为x=2是函数f(x)=x3-3ax+2的极小值点,所以f(2)=12-3a=0,解得a=4,所以函数f(x)的解析式为f(x)=x3-12x+2,f(x)=

3、3x2-12,由f(x)=0,得x=2,故函数f(x)在(-2,2)上是减少的,在(-,-2),(2,+)上是增加的,由此可知当x=-2时,函数f(x)取得极大值f(-2)=18.4.(2020湘潭模拟)某莲藕种植塘每年的固定成本是1万元,每年最大规模的种植是8万斤,每种植一斤藕,成本增加0.5元,销售额函数是f(x)=-x3+ax2+x,x是莲藕种植量,单位:万斤;销售额的单位:万元,a是常数,若种植2万斤,利润是2.5万元,则要使利润最大,每年种植莲藕()A.8万斤B.6万斤C.3万斤D.5万斤【解析】选B.设销售利润为g(x),得g(x)=-x3+ax2+x-1-x=-x3+ax2-1,

4、当x=2时,g(2)=-23+a22-1=2.5,解得a=2.所以g(x)=-x3+x2-1,g(x)=-x2+x=-x(x-6),所以函数g(x)在(0,6)上单调递增,在(6,8)上单调递减.所以当x=6时,函数g(x)取得极大值即最大值.5.若函数f(x)=ax-ln x在区间(0,e上的最小值为3,则实数a的值为世纪金榜导学号()A.e2B.2eC.D.【解题指南】(1)判断单调区间,把a分为a0与a0两种情况来确定单调区间,而a0时又要将与区间(0,e进行比较讨论;(2)根据各种情况的单调区间确定各种情况下的最小值,每计算一个a的值都要记得检验是否满足前提范围.【解析】选A.因为f(

5、x)=ax-ln x,(x0),所以f(x)=a-=(x0).当a0时,f(x)0(舍去).当a0时,当0x时,f(x)0,f(x)在上为减函数,当x时,f(x)0,f(x)在上为增函数.所以当0e时,即a(舍去),综上所述:a=e2.二、填空题(每小题5分,共15分)6.(2019濮阳模拟)函数f(x)=ex-2x的最小值为_.【解析】f(x)=ex-2,令f(x)=ex-2=0,解得x=ln 2.可得:函数f(x)在(-,ln 2)上单调递减,在(ln 2,+)上单调递增.所以x=ln 2时,函数f(x)取得极小值也是最小值,f(ln 2)=2-2ln 2.答案:2-2ln 27.(202

6、0咸阳模拟)已知y=f(x)是奇函数,当x(0,2)时,f(x)=ln x-ax,当x(-2,0)时,f(x)的最小值为1,则a=_.【解析】由题意知,当x(0,2)时,f(x)的最大值为-1.令f(x)=-a=0,得x=,当0x0;当x时,f(x)0.所以f(x)max=f=-ln a-1=-1,解得a=1.答案:18.已知函数f(x)=当x(-,m时,函数f(x)的取值范围为-16,+),则实数m的取值范围是_.世纪金榜导学号【解析】当x0时,f(x)=3(2+x)(2-x),所以当x-2时,f(x)0,函数f(x)单调递减;当-20,函数f(x)单调递增,所以函数f(x)在x=-2处取最

7、小值f(-2)=-16.画出函数的图像,结合函数的图像得-2m8时,函数f(x)总能取到最小值-16,故m的取值范围是-2,8. 答案: -2,8三、解答题(每小题10分,共20分)9.若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1) 求a,b的值.(2) 设函数g(x)的导数g(x)=f(x)+2,求g(x)的极值点.【解析】(1) 由题设知f(x)=3x2+2ax+b,且f(-1)=3-2a+b=0,f(1)=3+2a+b=0,解得a=0,b=-3.(2) 由(1) 知f(

8、x)=x3-3x,则g(x)=f(x)+2=(x-1)2(x+2),所以g(x)=0的根为x1=x2=1,x3=-2,即函数g(x)的极值点只可能是1或-2.当x-2时,g(x)0,当-2x0,当x1时,g(x)0,所以-2是g(x)的极值点,1不是g(x)的极值点.10.已知函数f(x)=ax+ln x,其中a为常数.世纪金榜导学号(1)当a=-1时,求f(x)的最大值.(2)若f(x)在区间(0,e上的最大值为-3,求a的值.【解析】(1)易知f(x)的定义域为(0,+),当a=-1 时,f(x)=-x+ln x,f(x)=-1+=,令f(x)=0,得x=1.当0x0;当x1时,f(x)0

9、.所以f(x)在(0,1)上是增函数,在(1,+)上是减函数.所以f(x)max=f(1)=-1.所以当a=-1时,函数f(x)在(0,+)上的最大值为-1.(2) f(x)=a+,x,.若a-,则f(x)0,从而f(x)在上单调递增,所以f(x)max=f(e)=ae+10,不符合题意.若a0得a+0,结合x,解得0x-;令f(x)0得a+0,结合x,解得-xe.从而f(x)在上单调递增,在上单调递减,所以f(x)max=f=-1+ln,令-1+ln=-3,得ln=-2,所以a=-e2,因为-e2-,所以a=-e2为所求,故实数a的值为-e2.(15分钟35分)1.(5分)设函数f(x)=(

10、x+1)ex+1,则()A.x=2为f(x)的极大值点B.x=2为f(x)的极小值点C.x=-2为f(x)的极大值点D.x=-2为f(x)的极小值点【解析】选D.函数f(x)=(x+1)ex+1,所以f(x)=(x+2)ex,令(x+2)ex=0,可得x=-2,当x-2时,f(x)-2时,f(x)0,函数是增函数,所以x=-2是函数的极小值点.2.(5分)用长为30 m的钢条围成一个长方体形状的框架(即12条棱长总和为30 m),要求长方体的长与宽之比为32,则该长方体最大体积是()A.24 m3B.15 m3C.12 m3D.6 m3【解析】选B.设该长方体的宽是x m,由题意知,其长是 m

11、,高是= m(0x3),则该长方体的体积V(x)= x =-x3+x2,V(x)=-x2+x,由V(x)=0,得到x=2(x=0舍去),且当0x0;当2x3时, V(x)0,即体积函数V(x)在x=2处取得极大值V(2)=15,也是函数V(x)在定义域上的最大值.所以该长方体体积的最大值是15 m3.【变式备选】用边长为120 cm的正方形铁皮做一个无盖水箱,先在四周分别截去一个小正方形,然后把四边翻转90角,再焊接成水箱,则水箱的最大容积为()A.120 000 cm3B.128 000 cm3C.150 000 cm3D.158 000 cm3【解析】选B.设水箱底长为x cm,则高为 c

12、m.由得0x0;当x(80,120)时,y0)在x=1和x=2处取得极值,且极大值为-,则函数f(x)在区间(0,4上的最大值为世纪金榜导学号()A.0B.-C.2ln 2-4D.4ln 2-4【解析】选D.函数的导数为f(x)=2ax+b+=.因为f(x)在x=1和x=2处取得极值,所以f(1)=2a+b+c=0,f(2)=4a+b+=0 ,因为f(x)极大值为-,a0,所以由函数性质知当x=1时,函数取得极大值为-,则f(1)=a+b+cln 1=a+b=-,由得a=,b=-3,c=2,即f(x)=x2-3x+2ln x,f(x)=x-3+=,由f(x)0得2x4或0x1,此时为增函数,由

13、f(x)0得1x-,即函数在区间(0,4上的最大值为4ln 2-4.4.(10分)(2019成都模拟)已知函数f(x)=aln x-x2+x-.世纪金榜导学号(1)当曲线f(x)在x=3时的切线与直线y=-4x+1平行,求曲线f(x)在处的切线方程.(2)求函数f(x)的极值,并求当f(x)有极大值且极大值为正数时,实数a的取值范围.【解析】(1)f(x)=-2x+a-2.由题意得f(3)=-23+a-2=-4,得a=3.当x=1时,f(1)=-12+1-=-,f(1)=-21+3-2=2,故曲线f(x)在处的切线方程为y+=2,即8x-4y-17=0.(2)f(x)=-2x+a-2=(x0)

14、,当a0时,f(x)0,所以f(x)在上单调递减,f(x)无极值.当a0时,由f(x)=0得x=,随x的变化,f(x)、f(x)的变化情况如下:xf(x)+0-f(x)极大值故f(x)有极大值,无极小值,极大值为f=aln-+-=aln-a,由aln-a0,结合a0可得a2e,所以当f(x)有极大值且极大值为正数时,实数a的取值范围是.5.(10分)(2020济宁模拟)已知函数f(x)=ln x-xex+ax(aR).世纪金榜导学号(1)若函数f(x)在1,+)上单调递减,求实数a的取值范围.(2)若a=1,求f(x)的最大值.【解题指南】(1)由题意分离参数,将原问题转化为函数求最值的问题,

15、然后利用导函数即可确定实数a的取值范围.(2)结合函数的解析式求导函数,将其分解因式,利用导函数研究函数的单调性,最后利用函数的单调性结合函数的解析式即可确定函数的最大值.【解析】(1)由题意知,f(x)=-(ex+xex)+a=-(x+1)ex+a0 在1,+)上恒成立,所以a(x+1)ex-在1,+)上恒成立.令g(x)=-+(x+1)ex,则g(x)=(x+2)ex+0,所以g(x)在1,+)上单调递增,所以g(x)min=g(1)=2e-1,所以a2e-1.(2)当a=1时,f(x)=ln x-xex+x(x0),则f(x)=-(x+1)ex+1=(x+1),令m(x)=-ex,则m(

16、x)=-ex0,m(1)0满足m(x0)=0,即=.当x(0,x0),m(x)0,f(x)0;当x(x0,+)时,m(x)0,f(x)1时,f(x)0,f(x)单调递增,则f(x)的单调递增区间为(1,+);当0x1时,f(x)0,f(x)单调递减,则f(x)的单调递减区间为(0,1).(2)f(x)=,g(x)=3x2+2bx-(2b+4)+=.令p(x)=3x2+(2b+3)x-1.因为a(1,2,所以f(x)的极小值点为a,则g(x)的极小值点为a.所以p(a)=0,即3a2+(2b+3)a-1=0,即b=,此时g(x)的极大值为g(1)=1+b-(2b+4)=-3-b=-3-=a-.因为a(1,2,所以a-2-=.故g(x)的极大值不大于.关闭Word文档返回原板块

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3