收藏 分享(赏)

2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc

上传人:高**** 文档编号:406828 上传时间:2024-05-27 格式:DOC 页数:11 大小:175KB
下载 相关 举报
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第1页
第1页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第2页
第2页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第3页
第3页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第4页
第4页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第5页
第5页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第6页
第6页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第7页
第7页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第8页
第8页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第9页
第9页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第10页
第10页 / 共11页
2016届高三数学(文理通用)一轮复习阶段回扣练5平面向量 WORD版含解析.doc_第11页
第11页 / 共11页
亲,该文档总共11页,全部预览完了,如果喜欢就下载吧!
资源描述

1、阶段回扣练5平面向量(建议用时:90分钟)一、选择题1已知平面向量a(1,2),b(2,m),且ab,则2a3b()A(2,4) B(3,6)C(4,8) D(5,10)解析由a(1,2),b(2,m),且ab,得1m2(2)m4,从而b(2,4),那么2a3b(4,8)答案C2(2015潍坊五校联考)已知向量a(3,4),b(x,3),c(0,1),若(ab)(bc)0,则x()A1或4 B1或4C2或3 D2或3解析ab(3x,1),bc(x,4),则(ab)(bc)(3x)x1(4)x23x40,解得x1或x4.故选A.答案A3(2014济南针对性训练)已知平面向量a,b满足|a|1,|

2、b|2,且(ab)a,则a与b的夹角为()A. B. C. D.解析因为(ab)a,所以(ab)a0,a2ab0,121cosa,b0,cosa,b,得a,b.答案B4(2015浙江五校联考)已知|a|b|a2b|1,则|a2b|()A9 B3 C1 D2解析由|a|b|a2b|1,得a24ab4b21,4ab4,|a2b|2a24ab4b2549,|a2b|3.答案B5(2014南昌模拟)设a,b为平面向量,则“|ab|a|b|”是“ab”的()A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件解析由|ab|a|b|可得a0,或b0,或a与b的夹角为0或180,所以由|

3、ab|a|b|可推得ab.反之,若a与b中至少有一个为零向量,则|ab|0,|a|b|0,可推得|ab|a|b|;若a与b中没有一个为零向量,则由ab可得a与b的夹角为0或180,可推得|ab|a|b|.综上所述,“|ab|a|b|”是“ab”的充分必要条件答案C6已知O是ABC所在平面内一点,D为BC边中点,且20,则有()A.2 B.C.3 D2解析由20,得22,即22,所以,即O为AD的中点答案B7平面上有四个互异点A,B,C,D,已知(2)()0,则ABC的形状是()A直角三角形 B等腰三角形C等腰直角三角形 D无法确定解析由(2)()0,得()()()0,所以()()0.所以|2|

4、20,|,故ABC是等腰三角形答案B8已知两点A(1,0),B(1,),O为坐标原点,点C在第二象限,且AOC,设2(R),则等于()A B. C1 D1解析如图,已知AOC,根据三角函数的定义可设C,其中r0.2,(2,0)(,),解得.答案B9(2014安庆二模)在ABC中,a,b,c分别为角A,B,C所对应的三角形的边长,若4a2b3c0,则cos B()A B. C. D解析由4a2b3c0,得4a3c2b2b()2b2b,所以4a3c2b.由余弦定理得cos B.答案A10设向量a,b,c满足|a|b|1,ab,ac,bc60,则|c|的最大值等于()A2 B. C. D1解析|a|

5、b|1,ab,向量a,b的夹角为120.如图所示,设a,OBb,c,则ac,bc,则AOB120,ACB60,AOBACB180,A,O,B,C四点共圆,不妨设为圆M.ba,2a22abb23,|,由正弦定理,可得AOB的外接圆即圆M的直径2R2,当|为圆M的直径时,|c|取得最大值2.答案A二、填空题11设向量a(x,3),b(2,1),若对任意的正数m,n,向量manb始终具有固定的方向,则x_解析当a与b共线时,向量manb始终具有固定的方向,则1x23,所以x6.答案612(2014南京、盐城模拟)已知|1,|2,AOB,则与的夹角大小为_解析以O为坐标原点,OA所在直线为x轴,与OA

6、垂直的直线为y轴建立平面直角坐标系则A(1,0),B(1,),.设,的夹角为,0,则cos ,所以.答案13(2014成都诊断)如图,在平行四边形ABCD中,BHCD于点H,BH交AC于点E,已知|3,215,若,则_解析设,由题意知2()()15,即2(1)215,得()()15,15,所以|cosCBHBHEB15,故BH5,EH2,得.答案14(2015日照重点中学诊断考试)在ABC中,A60,M是AB的中点,若AB2,BC2,D在线段AC上运动,则的最小值为_解析在ABC中,设角A,B,C的对边分别为a,b,c,根据余弦定理得a2b2c22bccos A,即12b242b,即b22b8

7、0,解得b4.设 (01),则()()( )( )2|2 |216262,当时,16262最小,最小值为.答案15(2014合肥质量检测)有下列命题:已知a,b是平面内两个非零向量,则平面内任一向量c都可表示为ab,其中,R;对平面内任意四边形ABCD,点E,F分别为AB,CD的中点,则2;a(1,1),A,B为直线xy20上的任意两点,则a;已知a与b夹角为,且ab,则|ab|的最小值为1;ac是(ab)ca(bc)的充分条件其中正确的是_(写出所有正确命题的编号)解析对于,注意到当a,b共线时,结论不正确;对于,注意到,0,因此2,正确;对于,取点A(0,2),B(2,0),则(2,2),

8、此时(2,2)与a不共线,因此不正确;对于,依题意得|a|b|cos ,|a|b|2,|ab|2|a|2|b|222|a|b|242,因此|ab|的最小值是1,正确;对于,注意到,当ac时,若a,c中有一个为0,等式显然成立,若a,c均不为0,可设cka,则有(ab)c(ab)kaa(bka)a(bc),即由ac可得(ab)ca(bc);反过来,由(ab)ca(bc)不能得知ac,因此 “ac”是“(ab)ca(bc)”的充分不必要条件,正确综上所述,其中正确的是.答案三、解答题16(2015漯河调研)在平面直角坐标系中,O为坐标原点,已知向量a(2,1),A(1,0),B(cos ,t)(1

9、)若a,且|,求向量的坐标;(2)若a,求ycos2cos t2的最小值解(1)(cos 1,t),又a,2tcos 10.cos 12t.又|,(cos 1)2t25.由得,5t25,t21.t1.当t1时,cos 3(舍去),当t1时,cos 1,B(1,1),(1,1)(2)由(1)可知t,ycos2cos cos2cos ,当cos 时,ymin.17(2014潍坊模拟)已知函数f(x)sin xcos x.(1)求函数yf(x)在x0,2上的单调递增区间;(2)在ABC中,内角A,B,C的对边分别是a,b,c,已知m(a,b),n(f(C),1),且mn,求B.解(1)f(x)sin

10、 xcos xsin,令2kx2k(kZ),得2kx2k(kZ),令k0,得x,令k1,得x,又x0,2,f(x)在0,2上的单调递增区间为0,2(2)由题意f(C)sin Ccos C,mn,a1f(C)b0,即ab(sin Ccos C),由正弦定理,得sin Asin B(sin Ccos C)sin Bsin Csin Bcos C.在ABC中,sin Asin(BC)sin Bcos Ccos Bsin C,sin Bsin Ccos Bsin C.又sin C0,sin Bcos B,tan B1,又0B,B.18ABC中内角A,B,C的对边分别为a,b,c,向量m(2sin B,

11、),n(cos 2B,2cos21),且mn.(1)求锐角B的大小;(2)如果b2,求SABC的最大值解(1)mn,2sin Bcos 2B,sin 2Bcos 2B,即tan 2B.又B为锐角,2B(0,),2B,B.(2)B,b2,由余弦定理cos B,得a2c2ac40.又a2c22ac,代入上式,得ac4,当且仅当ac2时等号成立故SABCacsin Bac,当且仅当ac2时等号成立,即SABC的最大值为.19(2015惠州模拟)已知向量(cos ,sin )(0),(sin ,cos ),其中O为坐标原点(1)若,求向量与的夹角;(2)若|2|对任意实数,恒成立,求实数的取值范围解(1)设向量与的夹角为,则cos ,当0时,cos ,;当0时,cos ,.故当0时,向量与的夹角为;当0时,向量与的夹角为.(2)|2|对任意的,恒成立,即(cos sin )2(sin cos )24对任意的,恒成立,即212sin()4对任意的,恒成立,所以或解得3或3.故所求实数的取值范围是(,33,)另法一由212sin()4对任意的,恒成立,可得212|4,解得|3或|1(舍去),由此求得实数的取值范围;另法二由|1|,可得|的最小值为|1|,然后将已知条件转化为|1|2,由此解得实数的取值范围

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3