1、高三月考数学试题(2000-12-2)班级 姓名 .第卷一、选择题:本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项符合题目要求。1设全集I=R,A=x|-4x,B=x|x-4,C=x|x,则C为( )(A)AB(B)AB(C)(D)21-3+5-7+49-51的值为( )(A)-22(B)-24(C)-26(D)-283复数z=icos70的辐角主值是( )(A)20(B)70(C)90(D)2704函数y=-cos的值域为( )(A)-1,0(B)-1,1(C)0,1 (D)0,5若a、b、c成等比数列,则函数y=ax2+bx+c的图像与x轴的交点个数为( )(A
2、)0(B)1(C)2(D)0或16设z1、z2C,则z1+z2是( )(A)纯虚数(B)实数(C)虚数(D)不能确定7在等差数列an中,若am=n,an=m(mn),则am+n为( )(A)m-n(B)0(C)m2(D)n28若cos2=,sin4+cos4的值为( )(A)(B)(C)(D)19将函数y=asin3x的图像向右平移个单位,再向上平移2个单位,所得图像经过点(,3),则实数a等于( )(A)1(B)-1(C)5(D)-510若sin+sin+sin=0,cos+cos+cos=0,则cos(-)的值是( )(A)-(B)(C)-1(D)111在等比数列an中,若a1=1,公比q
3、=,则使前n项和Sn=0的n的最小值为( )(A)12(B)6(C)3(D)012设1abc9(a、b、cN),若、成等比数列,则a、b、c的值依次是( )(A)2、4、8(B)3、6、9(C)2、6、8(D)2、4、9第卷二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。13已知关于x的方程5x=有负根,则a的取值范围是 。14等差数列an中,a5+a9+a14+a18=48,则前22项的和S22为 。15已知f(x+1)=,则f(+1)f(-9)等于 。16给出四个命题:若T0,T是f(x)的周期,则2T也是f(x)的周期;函数y=x2-2x+3在-1,2上的最大值为
4、3;y=|log2x|的图像关于y轴对称;函数f(x)=(a1)的图像关于y=x的对称。其中正确命题的序号是 。三、解答题:本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。17(本题满分12分)设函数g(x)=,f(x)=g(x)+1,判断函数g(x)的奇偶性;若f(m)=,求f(-m).18(本题满分12分)设=z+ai,aR,z=,化简z;若|,求的辐角主值的取值范围。19(本题满分12分)设ABC中的两个内角A、B所对的边分别为a、b,复数z1=a+bi,z2=cosA+icosB,若复数z1z2在复平面上对应的点在虚轴上,试判断ABC的形状,并说明理由。20(本题满分12分)一批救灾物资随5列货车从A市以v千米/小时的速度匀速直达灾区B市,已知A、B两市铁路线长为400千米,为安全起见,相邻两列货车的间距必须保持(v/10)2千米,求火车以多大的速度行驶,全部物质可以最快运到B市?21(本题满分12分)设集合A=x|20,若函数f(x)=(a0且a1)当xA时,值域为-,2,求实数a的值。22(本题满分14分)已知f(x)=(+)2(x0),又数列an(an0)中,a1=2,这个数列的前n项和公式Sn(nN)对所有大于1的自然数n都有Sn=f(Sn-1).(1)求数列an的通项公式;(2)若bn=(nN),求(b1+b2+bn-n).