1、离散型随机变量的均值与方差基础梳理1离散型随机变量的均值与方差若离散型随机变量X的分布列为Xx1x2xixnPp1p2pipn2三种分布(1)若X服从两点分布,则E(X),D(X);(2)若X服从二项分布XB(n,p),则E(X),D(X);(3)若X服从超几何分布,则E(X)3四条性质(1)E(aXb)aE(X)b(a、b为常数)(2)E(X1X2)EX1EX2(3)如果X1,X2相互独立,则E(X1X2)E(X1)E(X2)(4)D(aXb)a2D(X)双基自测1(2010山东)样本中有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为() A. B. C. D2X
2、101P2已知X的分布列为设Y2X3,则E(Y)的值为() A. B4 C1 D178910Px0.10.3y3(2010湖北)某射手射击所得环数的分布列如下:已知的期望E()8.9,则y的值为_A0.4 B0.6 C0.7 D0.94设随机变量XB(n,p),且E(X)1.6,D(X)1.28,则()An8,p0.2 Bn4,p0.4Cn5,p0.32 Dn7,p0.455(2010上海)随机变量的概率分布列由下表给出:78910P0.30.350.20.15该随机变量的均值是_例题分析考向一离散型随机变量的均值和方差【例1】A、B两个代表队进行乒乓球对抗赛,每队三名队员,A队队员是A1、A
3、2、A3,B队队员是B1、B2、B3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:对阵队员A队队员胜的概率A队队员负的概率A1和B1A2和B2A3和B3现按表中对阵方式出场胜队得1分,负队得0分,设A队,B队最后所得总分分别为X,Y(1)求X,Y的分布列;(2)求E(X),E(Y)【训练1】 (2011四川)某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算)有甲、乙两人相互独立来该租车点租车骑游(各租一车一次)设甲、乙不超过两小时还车的概率分别为,;两小时以上且不超过三小时还车的概率分别为,;两人租车时间都不会超过四
4、小时(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人付的租车费用之和为随机变量,求的分布列及数学期望E()考向二均值与方差性质的应用【例2】设随机变量X具有分布P(Xk),k1,2,3,4,5,求E(X2)2,D(2X1),.【训练2】 袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n1,2,3,4)现从袋中任取一球,X表示所取球的标号(1)求X的分布列、期望和方差;(2)若aXb,E()1,D()11,试求a,b的值考向三均值与方差的实际应用【例3】(2011福建)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,8,其中X5为标准A,X3为标准B
5、.已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准(1)已知甲厂产品的等级系数X1的概率分布列如下所示:X15678P0.4ab0.1且X1的数学期望E(X1)6,求a,b的值;(2)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:353385563463475348538343447567用样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望(3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?
6、说明理由注:(1)性价比;(2)性价比大的产品更具可购买性【训练3】 某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为,;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为和(1)(1)如果把10万元投资甲项目,用X表示投资收益(收益回收资金投资资金),求X的概率分布及E(X);(2)若把10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求的取值范围达标练习一、选择题1已知某一随机变量X的概率分布列如下,且E(X)6.3,则a的值为().X4a9P0.50.1
7、bA5 B6 C7 D82(2011安徽)已知随机变量X服从二项分布,且E(X)2.4,D(X)1.44,则二项分布的参数n,p的值为()An4,p0.6 Bn6,p0.4Cn8,p0.3 Dn24,p0.13已知随机变量X8,若XB(10,0.6),则E(),D()分别是()A6和2.4 B2和2.4C2和5.6 D6和5.64已知X的分布列为X101P则在下列式子中:E(X);D(X);P(X0).正确的个数是()A0 B1 C2 D35一个篮球运动员投篮一次得3分的概率为a,得2分的概率为b,不得分的概率为c(a、b、c(0,1),已知他投篮一次得分均值为2,则最小值为()A. B. C
8、. D.二、填空题6有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X表示取到次品的次数,则D(X)_.7已知离散型随机变量X的分布列如右表,若E(X)0,D(X)1,则a_,b_.8(2011上海)马老师从课本上抄录一个随机变量的概率分布列如下表:123P?!?请小牛同学计算的数学期望尽管“!”处完全无法看清,且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同据此,小牛给出了正确答案E()_.三、解答题9某大厦的一部电梯从底层出发后只能在第18、19、20层停靠若该电梯在底层载有5位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用X表示这5位乘客在第20层下电梯的人
9、数,求:(1)随机变量X的分布列;(2)随机变量X的期望10(2011陕西)如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟)10202030304040505060L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站(1)为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?(2)用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对(1)的选择方案,求X的分布列和数学期望提高练习一、选择题1某种种子每粒发芽的概率
10、都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X,则X的数学期望为()A100 B200 C300 D4002签盒中有编号为1、2、3、4、5、6的六支签,从中任意取3支,设X为这3支签的号码之中最大的一个,则X的数学期望为()A5 B5.25 C5.8 D4.6二、填空题3有一批产品,其中有12件正品和4件次品,从中任取3件,若表示取到次品的个数,则E()_.4罐中有6个红球,4个白球,从中任取1球,记住颜色后再放回,连续摸取4次,设为取得红球的次数,则的期望E()_.三、解答题5某省示范高中决定从高一年级开始,在每周的周一、周三、周五的课外活动期
11、间同时开设数学、物理、化学、生物和信息技术辅导讲座,每位有兴趣的同学可以在期间的任何一天参加任何一门科目的辅导讲座,也可以放弃任何一门科目的辅导讲座(规定:各科达到预先设定的人数时称为满座,否则称为不满座)统计数据表明,各学科讲座各天的满座的概率如下表:信息技术生物化学物理数学周一周三周五(1)求数学辅导讲座在周一、周三、周五都不满座的概率;(2)设周三各辅导讲座满座的科目数为,求随机变量的分布列和数学期望6某城市有甲、乙、丙3个旅游景点,一位游客游览这3个景点的概率分别是0.4、0.5、0.6,且游客是否游览哪个景点互不影响,用X表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对
12、值(1)求X的分布列及期望;(2)记“f(x)2Xx4在3,1上存在x0,使f(x0)0”为事件A,求事件A的概率7甲、乙两架轰炸机对同一地面目标进行轰炸,甲机投弹一次命中目标的概率为,乙机投弹一次命中目标的概率为,两机投弹互不影响,每机各投弹两次,两次投弹之间互不影响(1)若至少两次投弹命中才能摧毁这个地面目标,求目标被摧毁的概率;(2)记目标被命中的次数为随机变量,求的分布列和数学期望8(2011北京)以下茎叶图记录了甲、乙两组各四名同学的植树棵数乙组记录中有一个数据模糊,无法确认,在图中以X表示(1)如果X8,求乙组同学植树棵数的平均数和方差;(2)如果X9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y的分布列和数学期望