1、第五章 数列授课提示:对应学生用书第295页A组基础保分练1已知数列an的前n项和为Sn,且a15,a22,an2an13an2(n3),则S6()A567B637C657D727答案:B2已知数列an的前n项和Sn15913(1)n1(4n3),则S15S22S31()A76B78C78D76答案:D3(2021保定期末测试)在数列an中,若a11,a23,an2an1an(nN*),则该数列的前100项之和是()A18B8C5D2答案:C4(2021济南模拟)已知数列an的前n项和为Sn,a11,Sn2an1,则Sn()A.n1B2n1C.n1D解析:由Sn2an1可得Sn2(Sn1Sn)
2、,可得3Sn2Sn1,即,所以数列Sn是以S1a11为首项,为公比的等比数列,即Snn1.答案:A5数列an,bn满足a1b11,an1an2,nN*,则数列ban的前n项和为()A.(4n11)B(4n1)C.(4n11)D(4n1)解析:因为an1an2,a1b11,所以数列an是等差数列,数列bn是等比数列,an12(n1)2n1,bn12n12n1,数列ban的前n项和为ba1ba2banb1b3b5b2n120222422n2(4n1)答案:D6(多选题)(2021山东济宁期末)若Sn为数列an的前n项和,且Sn2an1,则下列说法正确的是()Aa516BS563C数列an是等比数列
3、D数列Sn1是等比数列解析:因为Sn为数列an的前n项和,且Sn2an1,所以a1S12a11,所以a11.当n2时,anSnSn12an2an1,即an2an1,所以数列an是以1为首项,2为公比的等比数列,故C正确;a512416,故A正确;Sn2an12n1,所以S525131,故B错误;因为S110,所以数列Sn1不是等比数列,故D错误答案:AC7(2021保定模拟)设数列an的前n项和为Sn,且a11,anan1(n1,2,3,),则S2n3_.答案:8(2020高考全国卷)数列an满足an2(1)nan3n1,前16项和为540,则a1_.解析:法一:因为an2(1)nan3n1,
4、所以当n为偶数时,an2an3n1,所以a4a25,a8a617,a12a1029,a16a1441,所以a2a4a6a8a10a12a14a1692.因为数列an的前16项和为540,所以a1a3a5a7a9a11a13a1554092448.因为当n为奇数时,an2an3n1,所以a3a12,a7a514,a11a926,a15a1338,所以(a3a7a11a15)(a1a5a9a13)80.由得a1a5a9a13184.又a3a12,a5a38a110,a7a514a124,a9a720a144,a11a926a170,a13a1132a1102,所以a1a110a144a110218
5、4,所以a17.法二:同法一得a1a3a5a7a9a11a13a15448.当n为奇数时,有an2an3n1,由累加法得an2a13(135n)(1n)n2n,所以an2n2na1.所以a1a3a5a7a9a11a13a15a18a1392448,解得a17.答案:79(2021大同调研)在数列an中,a13,an2an1n2(n2,且nN*)(1)求a2和a3的值;(2)证明:数列ann是等比数列,并求an的通项公式;(3)求数列an的前n项和Sn.解析:(1)a13,a22a1226,a32a23213.(2)证明:an2an1n2,n2,ann2(an1n1),n2.又a114,ann是
6、以4为首项,2为公比的等比数列ann42n12n1,an2n1n.(3)Sn2212322n(n1)2n1n22(2n1)2n2.10(2021成都摸底)设Sn为等差数列an的前n项和,且a215,S565.(1)求数列an的通项公式;(2)设数列bn的前n项和为Tn,且TnSn10,求数列|bn|的前n项和Rn.解析:(1)设等差数列an的公差为d,则由已知得:故an2n19.(2)由(1)得:Snn218n,Tnn218n10,bn易知,当1n9时,bn0,当n10时,bn0.()当1n9时,Rn|b1|b2|bn|b1b2bnn218n10;()当n10时,Rn|b1|b2|bn|b1b
7、2b9(b10b11bn)Tn2T9n218n152,故RnB组能力提升练1(2021山东模拟)在等差数列an中,已知a612,a1836.(1)求数列an的通项公式an;(2)若_,求数列bn的前n项和Sn.在bn,bn(1)nan,bn2anan这三个条件中任选一个补充在第(2)问中,并对其求解注:如果选择多个条件分别解答,则按第一个解答计分解析:(1)设数列an的公差为d,由题意,得解得d2,a12.an2(n1)22n.(2)选条件:bn,Sn1.选条件:an2n,bn(1)nan(1)n2n,Sn2468(1)n2n,当n为偶数时,Sn(24)(68)2(n1)2n2n;当n为奇数时
8、,n1为偶数,Sn(n1)2nn1.Sn选条件:an2n,bn22n2n2n4n,Sn2414426432n4n,4Sn2424436442(n1)4n2n4n1,3Sn24124224324n2n4n12n4n12n4n1,Sn(14n)4n1.2已知数列an的前n项和为Sn2nk.(1)若k2,求证:数列an不是等比数列;(2)若an是等比数列,设bnnan1,求bn的前n项和Tn.解析:(1)证明:若k2,则a1S14,a2S2S12,a3S3S24,则aa1a3,故数列an不是等比数列(2)由已知,可得a1S12k,当n2,nN*时,anSnSn1(2nk)(2n1k)2n1.若an是
9、等比数列,则a11,故k1,此时an2n1,则bnn2n,则Tn12222323n2n,2Tn122223(n1)2nn2n1.由可得Tn222232nn2n1n2n1(n1)2n12,Tn(n1)2n12.C组创新应用练1(2021长春联考)已知等差数列an的前n项和为Sn,公差d0,a6和a8是函数f(x)ln xx28x的极值点,则S8()A38B38C17D17解析:因为f(x)ln xx28x,所以f(x)x8,令f(x)0,解得x或x.又a6和a8是函数f(x)的极值点,且公差d0,所以a6,a8,所以解得所以S88a1d38.答案:A2(2020新高考全国卷)将数列2n1与3n2
10、的公共项从小到大排列得到数列an,则an的前n项和为_解析:法一(观察归纳法):数列2n1的各项为1,3,5,7,9,11,13,;数列3n2的各项为1,4,7,10,13,.观察归纳可知,两个数列的公共项为1,7,13,是首项为1,公差为6的等差数列,则an16(n1)6n5.故前n项和为Sn3n22n.法二(引入参变量法):令bn2n1,cm3m2,bncm,则2n13m2,即3m2n1,m必为奇数令m2t1,则n3t2(t1,2,3,)atb3t2c2t16t5,即an6n5.以下同法一答案:3n22n3已知数列an,若an1anan2(nN*),则称数列an为“凸数列”已知数列bn为“凸数列”,且b11,b22,则数列bn的前2 019项和为_解析:由“凸数列”的定义及b11,b22,得b33,b41,b52,b63,b71,b82,所以数列bn是周期为6的周期数列,且b1b2b3b4b5b60,于是数列bn的前2 019项和等于b1b2b34.答案:4