收藏 分享(赏)

2.1《圆锥曲线》教案(苏教版选修2-1)..doc

上传人:高**** 文档编号:36996 上传时间:2024-05-24 格式:DOC 页数:3 大小:132KB
下载 相关 举报
2.1《圆锥曲线》教案(苏教版选修2-1)..doc_第1页
第1页 / 共3页
2.1《圆锥曲线》教案(苏教版选修2-1)..doc_第2页
第2页 / 共3页
2.1《圆锥曲线》教案(苏教版选修2-1)..doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、2.1圆锥曲线教学目标1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义,并能用数学符号或自然语言的描述。2通过用平面截圆锥面,感受、了解双曲线的定义。能用数学符号或自然语言描述双曲线的定义。教学重点、难点重点:椭圆、抛物线、双曲线的定义。 难点:用数学符号或自然语言描述三种曲线的定义教 具 多媒体课件、实物投影仪内容分析本节课教材利用平面对圆锥面的不同截法,产生三种不同的圆锥曲线,得出椭圆、双曲线和抛物线的概念。这样既使学生经历概念的形成过程,更有利于从整体上认识三种圆锥曲线的内在关系。根据问题的难易度及学生的认知水平,要求学生掌握椭圆、抛物线的定义,对双曲

2、线只要求了解其定义。这是建立在学生的最近发展区上的形式化的过程,有利于培养学生的数学化能力,提高数学素养。学法指导教学中向学生展示平面截圆锥面得到椭圆的过程,使学生加深对圆锥曲线的理解。对用Dandelin双球发现椭圆的特性(由此形成椭圆的定义),可直接给出放进双球后的图形,再引导学生发现“到两切点距离之和为定值”的特性,这一内容让学生感知、认同即可,不必对探究、推理过程作过多研究。教学过程设计1问题情境我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题:用平面去截圆

3、锥面能得到哪些曲线?2学生活动学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于Dandelin双球理论只要让学生感知、认同即可。3建构数学(1)圆锥曲线的定义椭圆:平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。对于第二种情形,平面与圆锥曲线的截线由两支曲线构成。(类比椭圆的定义)双曲线:平面内到两定点,的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线,两个定点,叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。对于第三种情形,平面与圆锥曲线的截线是一条曲线构成。抛物线:平面内到一个定点F和一条定直线L(F

4、不在L上)的距离相等的点轨迹叫做抛物线,定点叫做抛物线的焦点,定直线L叫做抛物线的准线。 (2)圆锥曲线的定义式上面的三个结论我们都可以用数学表达式来体现:设平面内的动点为M。椭圆:动点M满足的式子:(2a的常数)双曲线:动点M满足的式子:(02aBC,由椭圆的定义可得点A在一个椭圆上运动,且以B、C为焦点。MFl例3、已知定点F和定直线l,F不在直线l上,动圆M过F且与直线l相切,求证:圆心M的轨迹是一条抛物线。分析:欲证明轨迹为抛物线只需抓住抛物线的定义即可。变题:已知定点F和定圆C,F在圆C外,动圆M过F且与圆C相切,探究动圆的圆心M的轨迹是何曲线?提示:相切须考虑外切和内切。拓展:此处定点F也可改成定圆(但不宜在课堂上搞得过于复杂,可留作优生课后思考)课堂练习1、 已知ABC中,BC长为6,周长为16,那么顶点A在怎样的曲线上运动?2、 设Q是圆上的动点,另有点A,线段AQ的垂直平分线l交半径OQ于点P,当Q点在圆周上运动时,则点P的轨迹是何曲线?5回顾小结(1)三种圆锥曲线的定义(2)三种圆锥曲线的定义式6作业布置(1)创新课时训练第1920页(2)思考:课本第25页3、4教学反思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3