收藏 分享(赏)

2012届高考数学(理)一轮经典例题——复数概念(福建版).doc

上传人:高**** 文档编号:351581 上传时间:2024-05-27 格式:DOC 页数:6 大小:113KB
下载 相关 举报
2012届高考数学(理)一轮经典例题——复数概念(福建版).doc_第1页
第1页 / 共6页
2012届高考数学(理)一轮经典例题——复数概念(福建版).doc_第2页
第2页 / 共6页
2012届高考数学(理)一轮经典例题——复数概念(福建版).doc_第3页
第3页 / 共6页
2012届高考数学(理)一轮经典例题——复数概念(福建版).doc_第4页
第4页 / 共6页
2012届高考数学(理)一轮经典例题——复数概念(福建版).doc_第5页
第5页 / 共6页
2012届高考数学(理)一轮经典例题——复数概念(福建版).doc_第6页
第6页 / 共6页
亲,该文档总共6页,全部预览完了,如果喜欢就下载吧!
资源描述

1、判断正误练习判断下面说法是否正确,如果并说明原因。(1)是纯虚数;(2)在复平面内,原点也在虚轴上;分析:先判断正误,若错误考虑如何纠错?或直接改正或举反例试之。(1)错误。因为当时,不是纯虚数。(2)错误。因为原点不在虚轴上。探究性问题已知关于的方程有实根,求实数的取值。分析:注意不能用判别式来解。如: 方程有实根 错误的原因是虚数不能比较大小,因此涉及到大小问题的概念和理论如与不等式有关的判别解:设方程的实根为x0,则整理得:由复数相等的条件知:复数的分类例题例 实数分别取什么值时,复数是(1)实数(2)虚数(3)纯虚数。解:实部,虚部(1)当时,Z是实数;(2)当,且时,Z是虚数;(3)

2、当或时是纯虚数复数的相等例题例 设(),当取何值时,(1);(2)分析:复数相等的充要条件,提供了将复数问题转化为实数问题的依据,这是解复数问题常用的思想方法,这个题就可利用复数相等的充要条件来列出关于实数的方程,求出的值解:(1)由可得:解之得,即:当时(2)当可得:或,即时复数与复平面上的点的对应关系的例题例 设复数和复平面的点Z()对应,、必须满足什么条件,才能使点Z位于:(1)实轴上?(2)虚轴上?(3)上半平面(含实轴)?(4)左半平面(不含虚轴及原点)?分析:本题主要考查复数与复平面的点Z()建立一一对应的关系解:(1)(2)且(3)(4)求点的轨迹的例题例 已知关于t的一元二次方

3、程(1)当方程有实根时,求点的轨迹方程(2)求方程的实根的取值范围思路分析(1)本题方程中有三个未知数由复数相等的充要条件能得到两个等式,而结论是要求动点的轨迹方程,联想到解析几何知识,求的轨迹方程就是求关于的方程,于是上面的两个等式正是轨迹方程的参数形式,消去参数t,问题得解(2)由上面解答过程中的知可看作一条直线,由知是一个圆,因此求实根t的范围可转化为直线与圆有公共点的问题解答(1)设实根为t,则即根据复数相等的充要条件得由(2)得代入(1)得即(3)所求点的轨迹方程为,轨迹是以(1,1)为圆心,为半径的圆(2)由(3)得圆心为(1,1),半径,直线与圆有公共点,则,即 ,故方程的实根的

4、取值范围为思维诊断此题涉及到复数与解析几何的知识,综合性较强,学生往往不易入手,审题不到位,且有畏惧心理,是思维受阻的主要因素,在第(2)题求实根的取值范围时还可由(1)(2)消去y建立关于实数x的二次方程,用判别式求出t的范围同时通过本题,同学们要进一步认识,把复数问题转化为实数问题求解的必要性,这是解决有关复数与方程问题惯用的手法,要切实掌握好复数相等的例题2例 已知x是实数,y是纯虚数,且满足,求x与y思路分析因为y是纯虚数,所以可设,代入等式,把等式的左、右两边都整理成形式后,可利用复数相等的充要条件得到关于x与b的方程组,求解后得x与b值解答设代入条件并整理得由复数相等的条件得解得

5、思维诊断一般根据复数相等的充要条件,可由一个复数等式得到两个实数等式组成的方程组,从而可确定两个独立参数,本题就是利用这一重要思想,化复数问题为实数问题得以解决在解此题时,学生易忽视y是纯虚数这一条件,而直接得出等式进行求解,这是审题不细所致复数相等的例题3例 已知关于x的方程有实根,求这个实根以及实数k的值思路分析方程的实根必然适合方程,设为方程的实根,代入整理后得的形式由复数相等的充要条件,可得关于与k的方程组,通过解方程组便可求得与k解答设是方程的实根,代入方程并整理得由复数相等的条件得解得或方程的实根为或,相应的k值为或思维诊断学生易给出如下错解:方程有实根,解得或这是由于错把实系数一

6、元二次方程根的判别式运用到了复系数一元二次方程中,事实上,在复数集内解复系数一元二次方程,判别式不能够判断方程有无实根,这一点后面还会提到因此,解关于方程有实根的问题,一般都是把实根代入方程,用复数相等条件求解复数的分类例题例 m取何实数时,复数(1)是实数?(2)是虚数?(3)是纯虚数?思路分析本题是判断复数在何种情况下为实数、虚数、纯虚数由于所给复数z已写成标准形式,即,所以只需按题目要求,对实部和虚部分别进行处理,就极易解决此题解答(1)当即 时,z是实数(2)当即 当且时,z是虚数(3)当即当或时,z是纯虚数思维诊断研究一个复数在什么情况下是实数、虚数或纯虚数时,首先要保证这个复数的实部、虚部是有意义的,这是一个前提条件,学生易忽略这一点如本题易忽略分母不能为0的条件,丢掉,导致解答出错 .精品资料。欢迎使用。高考资源网w。w-w*k&s%5¥u高考资源网w。w-w*k&s%5¥u

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3