星期四(函数与导数问题)2016年_月_日设f(x)ex(ax2x1)(1)若a0,讨论f(x)的单调性;(2)x1时,f(x)有极值,证明:当时,|f(cos )f(sin )|2.解(1)f(x)ex(ax2x1)ex(2ax1)aex(x)(x2),当a时,f(x)ex(x2)20,f(x)在R上单增;当0a时,由f(x)0,得x2或x;由f(x)0,得x2,f(x)在和(2,)上单调递增,在上单调递减当a时,由f(x)0,得x或x2;由f(x)0,得2x,f(x)在(,2)和)上单调递增,在上单调递减(2)证明x1时,f(x)有极值,f(1)3e(a1)0,a1,f(x)ex(x2x1),f(x)ex(x1)(x2)由f(x)0,得2x1,f(x)在2,1上单调递增,sin ,cos 0,1,|f(cos )f(sin )|f(1)f(0)e12.