1、第二轮复习一 化归思想、专题精讲: 数学思想是数学内容的进一步提炼和概括,是对数学内容的种本质认识,数学方法是实施有关数学思想的一种方式、途径、手段,数学思想方法是数学发现、发明的关键和动力抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识 初中数学的主要数学思想是化归思想、分类讨论思想、数形结合思想等本专题专门复习化归思想所谓化归思想就是化未知为已知、化繁为简、化难为易如将分式方程化为整式方程,将代数问题化为几何问题,将四边形问题转化为三角形问题等实现这种转化的方法
2、有:待定系数法、配方法、整体代人法以及化动为静、由抽象到具体等、典型例题剖析【例1】如图311,反比例函数y=与一次函数y=x+2的图象交于A、B两点 (1)求 A、B两点的坐标; (2)求AOB的面积 【例2】解方程: 【例3】如图 312,梯形 ABCD中,ADBC,AB=CD,对角线AC、BD相交于O点,且ACBD,AD=3,BC=5,求AC的长 【例4】已知ABC的三边为a,b,c,且,试判断ABC的形状 【例5】ABC中,BC,AC,ABc若,如图l,根据勾股定理,则。若ABC不是直角三角形,如图2和图3,请你类比勾股定理,试猜想与c2的关系,并证明你的结论 同步跟踪配套试题(60分
3、 45分钟)一、选择题(每题 3分,共 18分)1已知|x+y|+(x2y)2=0,则( ) 2一次函数y=kxb的图象经过点A(0,2)和B(3,6)两点,那么该函数的表达式是( ) 3设一个三角形的三边长为3,l2m,8,则m的取值范围是( ) A0m B. 5m 2 C2m 5 Dml4已知的值为( ) A、 B、 C、 D、5若是完全平方式,则m=( ) A6 B4 C0 D4或06如果表示a、b为两个实数的点在数轴上的位置如图3l8所示,那么化简的结果等于( ), A2a B2b C2a D2b二、填空题(每题2分,共u分)7已知抛物线的对称轴为直线x=2,且经过点(5,4)和点(1,4)则该抛物线的解析式为_8用配方法把二次函数 y=x23xl写成 y=(x+m)2n的形式,则y=_。9若分式的值为零,则x=_。10函数y=中自变量x的取值范围是_.11如果长度分别为5、3、x的三条线段能组成一个三角形,那么x的范围是_.12 点(1,6)在双曲线y= 上,则k=_三、解答题(l题12分,其余每题6分,共30分)13解下歹方程(组): (1); (2) (3) (4) 14已知 15如图3l9,在梯形ABCD中,ADBC,AB=CD,B=60,AD=8,BC=14,求梯形ABCD的周长16求直线y=3x1与y=15x的交点坐标。