收藏 分享(赏)

2020新高考数学(文)二轮专题培优新方案检测:主攻36个必考点 数列 考点过关检测九 WORD版含解析.doc

上传人:高**** 文档编号:332167 上传时间:2024-05-27 格式:DOC 页数:5 大小:62KB
下载 相关 举报
2020新高考数学(文)二轮专题培优新方案检测:主攻36个必考点 数列 考点过关检测九 WORD版含解析.doc_第1页
第1页 / 共5页
2020新高考数学(文)二轮专题培优新方案检测:主攻36个必考点 数列 考点过关检测九 WORD版含解析.doc_第2页
第2页 / 共5页
2020新高考数学(文)二轮专题培优新方案检测:主攻36个必考点 数列 考点过关检测九 WORD版含解析.doc_第3页
第3页 / 共5页
2020新高考数学(文)二轮专题培优新方案检测:主攻36个必考点 数列 考点过关检测九 WORD版含解析.doc_第4页
第4页 / 共5页
2020新高考数学(文)二轮专题培优新方案检测:主攻36个必考点 数列 考点过关检测九 WORD版含解析.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、考点过关检测(九)1(2019济宁模拟)已知数列an满足an1anan1(n2),a1m,a2n,Sn为数列an的前n项和,则S2 019的值为()A2 019nmBn2 019mC2m D2n解析:选Dan1anan1(n2),a1m,a2n,a3nm,a4m,a5n,a6mn,a7m,a8n,an6an,且a1a2a3a4a5a60,则S2 019S33663336(a1a2a6)a1a2a33360mnnm2n.2(2019安徽马鞍山一模)已知函数f(n)n2cos(n),且anf(n)f(n1),则a1a2a3a100()A0 B100C100 D10 200解析:选Bf(n)n2co

2、s(n)(1)nn2.由anf(n)f(n1)(1)nn2(1)n1(n1)2(1)nn2(n1)2(1)n1(2n1),得a1a2a3a1003(5)7(9)199(201)250100.故选B.3(2019泉州模拟)若数列an是正项数列,且n2n,则a1等于()A2n22n Bn22nC2n2n D2(n22n)解析:选An2n,n1时,2,解得a14.n2时,(n1)2n1,相减可得2n,an4n2,n1时也成立,4n.则a14(12n)42n22n.4(2019广州模拟)已知递增数列an对任意nN*均满足anN*,aan3n,记bna23n1(nN*),则数列bn的前n项和等于()A2

3、nn B2n11C. D.解析:选Daa13a13,讨论:若a11aa1a11,不合题意;若a12a23;若a13aa1a33,不合题意,即a12,a23,aa26a36,所以aa39a69,所以a9aa618,a18aa927,a27aa1854,a54aa2781,则bn3n,所以数列bn的前n项和等于.5(2019河南郑州质检)已知数列an满足a1a2a3an2n2(nN*),且对任意nN*都有t,则t的取值范围为()A. B.C. D.解析:选D数列an满足a1a2a3an2n2(nN*),n1时,a12;n2时,a1a2a3an12(n1)2,可得an22n1.又a12也符合上式,数

4、列an的通项公式为an22n1.,数列为等比数列,首项为,公比为.对任意nN*都有的最大正整数n为_解析:设等差数列an的公差为d,由已知可得解得故数列an的通项公式为an2n.Sna1,.得a111,所以Sn,由Sn,得0n5,故最大正整数n为5.答案:2n57(2019贺州联考)已知等差数列an的公差d2,且a1,a31,a57成等比数列(1)求数列an的通项公式;(2)设bn(1)n1an,求数列bn的前2n项和T2n.解:(1)d2,a1,a31,a57成等比数列,a1(a57)(a31)2,即a1(a115)(a13)2,解得a11,ana1(n1)d2n1.(2)bn(1)n1an

5、(1)n1(2n1),T2nb1b2b2n1b2n1357(4n3)(4n1)2n.8(2019南昌重点中学高三段考)已知数列an是等差数列,bn是等比数列,a11,b12,a2b27,a3b313.(1)求an和bn的通项公式;(2)若cn求数列cn的前2n项和S2n.解:(1)设数列an的公差为d,数列bn的公比为q(q0),依题意有解得故an2n1,bn2n.(2)由已知c2n1a2n14n3,c2nb2n4n,所以数列cn的前2n项和S2n(a1a3a2n1)(b2b4b2n)2n2n(4n1)9已知等差数列an的前n项和为Sn,S70,a32a212(nN*)(1)求数列an的通项公

6、式an;(2)求数列的前n项和Sn.解:(1)设等差数列an的公差为d,由已知得解得所以an4n16.(2)由(1)知an4n16,所以,所以Sn,两边同乘以,得Sn,两式相减,得Sn1,所以Sn2.10(2019青岛二模)已知数列an中,a22a12,an12an13an(n2,nN*)设数列bn满足bnan1an.(1)证明:数列bn是等比数列;(2)设cn,求数列cn的前n项和Sn.解:(1)证明:因为an12an13an(n2,nN*),bnan1an,所以2,因为b1a2a1211,所以数列bn是以1为首项,2为公比的等比数列(2)由(1)知bn12n12n1.因为cn,所以cn,所以Snc1c2cn.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3