收藏 分享(赏)

2012届高中数学:1.4排列组合应用题的解题策略 素材 (北师大选修2-3).doc

上传人:高**** 文档编号:318053 上传时间:2024-05-27 格式:DOC 页数:7 大小:343.50KB
下载 相关 举报
2012届高中数学:1.4排列组合应用题的解题策略 素材 (北师大选修2-3).doc_第1页
第1页 / 共7页
2012届高中数学:1.4排列组合应用题的解题策略 素材 (北师大选修2-3).doc_第2页
第2页 / 共7页
2012届高中数学:1.4排列组合应用题的解题策略 素材 (北师大选修2-3).doc_第3页
第3页 / 共7页
2012届高中数学:1.4排列组合应用题的解题策略 素材 (北师大选修2-3).doc_第4页
第4页 / 共7页
2012届高中数学:1.4排列组合应用题的解题策略 素材 (北师大选修2-3).doc_第5页
第5页 / 共7页
2012届高中数学:1.4排列组合应用题的解题策略 素材 (北师大选修2-3).doc_第6页
第6页 / 共7页
2012届高中数学:1.4排列组合应用题的解题策略 素材 (北师大选修2-3).doc_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

1、排列组合应用题的解题策略排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略。1、 相邻问题捆绑法。题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。例1:五人并排站成一排,如果必须相邻且在的右边,那么不同的排法种数有( )A、60种 B、48种 C、36种 D、24种解析:把视为一人,且固定在的右边,则本题相当于4人的全排列,种,答案:2、 相离问题插空排。元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个

2、元素插入上述几个元素的空位和两端。 例2:七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A、1440种 B、3600种 C、4820种 D、4800种解析:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种,选3、 定序问题缩倍法。在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。例3:五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法种数是( )A、24种 B、60种 C、90种 D、120种解析:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种,选4、标号排位问题分步法。把元素排到指定位

3、置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。例4:将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A、6种 B、9种 C、11种 D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有331=9种填法。选5、 有序分配问题逐分法。有序分配问题指把元素分成若干组,可用逐步下量分组法。例5:(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选

4、法种数是( )A、1260种 B、2025种 C、2520种 D、5040种解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务,第三步从另外的7人中选1人承担丙项任务,不同的选法共有种。选(2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A、种 B、种 C、种 D、种答案:6、 全员分配问题分组法。例6:(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?解析:把四名学生分成3组有种方法,再把三组学生分配到三所学校有种,故共有种方法。说明:分配的元素多于对象且每一对象都有元素分配时常用先分组再分

5、配。(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A、480种 B、240种 C、120种 D、96种答案:7、 名额分配问题隔板法。例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?解析:10个名额分到7个班级,就是把10个名额看成10个相同的小球分成7堆,每堆至少一个,可以在10个小球的9个空位中插入6块木板,每一种插法对应着一种分配方案,故共有不同的分配方案为种。8、 限制条件的分配问题分类法。例8:某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同

6、派遣方案?解析:因为甲乙有限制条件,所以按照是否含有甲乙来分类,有以下四种情况:若甲乙都不参加,则有派遣方案种 若甲参加而乙不参加,先安排甲有3种方法,然后安排其余学生有方法,所以共有;若乙参加而甲不参加同理也有种若甲乙 都参加,则先安排甲乙,有7种方法,然后再安排其余8人到另外两个城市有种,共有方法。所以共有不同的派遣方法总数为种。9、 多元问题分类法。元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计。例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A、210种 B、300种 C、464种 D、600种解析:按题

7、意,个位数字只可能是0,1,2,3,4共5种情况,分别有个,个,合并总计300个。选(2)从1,2,3,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?解析:被取的两个数中至少有一个能被7整除时,他们的乘积就能被7整除,将这100个数组成的集合视为全集I,能被7整除的数的集合记做共有14个元素,不能被7整除的数组成的集合记做共有86个元素;由此可知,从中任取2个元素的取法有,从中任取一个,又从中任取一个共有,两种情形共符合要求的取法有种。(3)从1,2,3,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?解析:将分成四

8、个不相交的子集,能被4整除的数集;能被4除余1的数集,能被4除余2的数集,能被4除余3的数集,易见这四个集合中每一个有25个元素;从中任取两个数符合要;从中各取一个数也符合要求;从中任取两个数也符合要求;此外其它取法都不符合要求;所以符合要求的取法共有种10、交叉问题集合法。某些排列组合问题几部分之间有交集,可用集合中求元素个数公式。例10:从6名运动员中选出4人参加4100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案?解析:设全集=6人中任取4人参赛的排列,A=甲跑第一棒的排列,B=乙跑第四棒的排列,根据求集合元素个数的公式得参赛方法共有:种。11、定位问题优先法。某个

9、或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。例11:1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?解析:老师在中间三个位置上选一个有种,4名同学在其余4个位置上有种方法;所以共有种。12、多排问题单排法。把元素排成几排的问题可归结为一排考虑,再分段处理。例12:(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )A、36种 B、120种 C、720种 D、1440种解析:前后两排可看成一排的两段,因此本题可看成6个不同的元素排成一排,共种,选(2)8个不同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个

10、元素排在后排,有多少种不同排法?解析:看成一排,某2个元素在前半段四个位置中选排2个,有种,某1个元素排在后半段的四个位置中选一个有种,其余5个元素任排5个位置上有种,故共有种排法。13、“至少”“至多”问题用间接排除法或分类法。例13:从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有 ( )A、140种 B、80种 C、70种 D、35种解析1:逆向思考,至少各一台的反面就是分别只取一种型号,不取另一种型号的电视机,故不同的取法共有种。选解析2:至少要甲型和乙 型电视机各一台可分两种情况:甲型1台乙型2台;甲型2台乙型1台;故不同的取法有台。选14、

11、选排问题先取后排。从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法。例14:(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?解析:先取四个球中二个为一组,另二组各一个球的方法有种,再排:在四个盒中每次排3个有种,故共有种。(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?解析:先取男女运动员各2名,有种,这四名运动员混和双打练习有中排法,故共有种。15、部分合条件问题排除法。在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求。例15:(1)以正方体的顶点为顶点的四面体共有(

12、 )A、70种 B、64种 C、58种 D、52种解析:正方体8个顶点从中每次取四点,理论上可构成四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以四面体实际共有个。(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有( )A、150种 B、147种 C、144种 D、141种解析:10个点中任取4个点共有种,其中四点共面的有三种情况:在四面体的四个面上,每面内四点共面的情况为,四个面共有个;过空间四边形各边中点的平行四边形共3个;过棱上三点与对棱中点的三角形共6个;所以四点不共面的情况的种数是种。16、圆排问题单排法。把个不同元素放在圆周个无编号位置上

13、的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列个普通排列:在圆排列中只算一种,因为旋转后可以重合,故认为相同,个元素的圆排列数有种。因此可将某个元素固定展成单排,其它的元素全排列。例16:5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?解析:首先可让5位姐姐站成一圈,属圆排列有种,然后在让插入其间,每位均可插入其姐姐的左边和右边,有2种方式,故不同的安排方式种不同站法。说明:从个不同元素中取出个元素作圆形排列共有种不同排法。17、可重复的排列求幂法。允许重复排列问题的特点是以

14、元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地个不同元素排在个不同位置的排列数有种方法。例17:把6名实习生分配到7个车间实习共有多少种不同方法?解析:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有种不同方案。18、复杂排列组合问题构造模型法。例18:马路上有编号为1,2,3,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:把此问题当作一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法。所以满足条件的

15、关灯方案有10种。说明:一些不易理解的排列组合题,如果能转化为熟悉的模型如填空模型,排队模型,装盒模型可使问题容易解决。19、元素个数较少的排列组合问题可以考虑枚举法。例19:设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?解析:从5个球中取出2个与盒子对号有种,还剩下3个球与3个盒子序号不能对应,利用枚举法分析,如果剩下3,4,5号球与3,4,5号盒子时,3号球不能装入3号盒子,当3号球装入4号盒子时,4,5号球只有1种装法,3号球装入5号盒子时,4,5号球也只有1种

16、装法,所以剩下三球只有2种装法,因此总共装法数为种。20、复杂的排列组合问题也可用分解与合成法。例20:(1)30030能被多少个不同偶数整除?解析:先把30030分解成质因数的形式:30030=23571113;依题意偶因数2必取,3,5,7,11,13这5个因数中任取若干个组成成积,所有的偶因数为个。 (2)正方体8个顶点可连成多少队异面直线?解析:因为四面体中仅有3对异面直线,可将问题分解成正方体的8个顶点可构成多少个不同的四面体,从正方体8个顶点中任取四个顶点构成的四面体有个,所以8个顶点可连成的异面直线有358=174对。21、利用对应思想转化法。对应思想是教材中渗透的一种重要的解题

17、方法,它可以将复杂的问题转化为简单问题处理。例21:(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?解析:因为圆的一个内接四边形的两条对角线相交于圆内一点,一个圆的内接四边形就对应着两条弦相交于圆内的一个交点,于是问题就转化为圆周上的10个点可以确定多少个不同的四边形,显然有个,所以圆周上有10点,以这些点为端点的弦相交于圆内的交点有个。(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从到的最短路径有多少种?解析:可将图中矩形的一边叫一小段,从到最短路线必须走7小段,其中:向东4段,向北3段;而且前一段的尾接后一段的首,所以只要确定向东走过4段的走法,便能确定路径,因此不同走法有种。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 幼儿园

网站客服QQ:123456
免费在线备课命题出卷组卷网版权所有
经营许可证编号:京ICP备12026657号-3