1、2020-2021学年上学期高一年级期中考试考试范围:必修一;考试时间:120分钟;命题人:郑宇、李梅注意:本试卷包含、两卷。第卷为选择题,所有答案必须用2B铅笔涂在答题卡中相应的位置。第卷为非选择题,所有答案必须填在答题卷的相应位置。答案写在试卷上均无效,不予记分。1. 设全集U=1,2,3,4,5,6,集合A=1,2,B=2,3,则A(B)= ( )A. 4,5B. 2,3)C. 1D. 2【答案】C【解析】【分析】本题考查集合的交集、补集的混合运算,属于基础题.先求集合B的补集,再与A求交集即可.【解答】解:全集U=1,2,3,4,5,6,集合,.故选C.2. 已知常数且,则函数恒过定点
2、 ( )A. B. C. D. 【答案】B【解析】【分析】本题考查的知识点是指数函数的图象与性质,属于基础题根据指数函数的性质,我们易得指数函数y=ax(a0,a1)的图象恒过(0,1)点,再根据函数图象的平移变换法则,我们易求出平移量,进而可以得到函数图象平移后恒过的点A的坐标【解答】解:由指数函数y=ax(a0,a1)的图象恒过(0,1)点,而要得到函数y=ax-1-1(a0,a1)的图象,可将指数函数y=ax(a0,a1)的图象向右平移1个单位,再向下平移1个单位则(0,1)点平移后得到(1,0)点故选B3. 函数y=x2-2x的定义域为0,1,2,3,那么其值域为( )A. -1,0,
3、3B. 0,1,2,3C. y|-1y3D. y|0y3【答案】A【解析】【分析】本题考查函数的值域的求法,是基础的计算题在函数解析式中分别取x为:0,1,2,3,求出对应的函数值得答案【解答】解:y=x2-2x的定义域为0,1,2,3,在函数解析式中分别取x为:0,1,2,3,可得y的值分别为:0,-1,0,3,函数y=x2-2x,x0,1,2,3的值域为-1,0,3故选A4. 三个数a=0.42,b=log20.4,c=20.4之间的大小关系是()A. acbB. bacC. abcD. bca【答案】B【解析】解:a=0.42(0,1),b=log20.40,c=20.41,bac故选:
4、B利用指数函数与对数函数的单调性即可得出本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题5. 设,则的值是()A. 24B. 21C. 18D. 16【答案】A【解析】【分析】此题以分段函数为载体,考查函数的解析式以及函数值的计算,属于一般题.【解答】解:由题意,而,计算可知所以从而故选A.6. 函数的图象可能是( )A. B. C. D. 【答案】C【解析】【分析】本题考查函数图像的应用,函数奇偶性,属于基础题.根据函数的奇偶性和特殊点的值排除即可求解.【解答】解:因为,所以函数为奇函数,可排除B,当x=1时,所以排除A,当时,所以排除D,故选C.7. 函数的零点所
5、在的区间为( )A. B. C. D. 【答案】B【解析】【分析】本题主要考查函数零点存在性定理,是基础题.函数在(0,+)单调递增,由零点存在性定理求解即可.【解答】解:函数在(0,+)单调递增,又,函数的零点所在的区间为.故选B.8. 若实数a,b满足,则( )A.B.C.D. 1【答案】D【解析】【分析】本题考查了指数式化为对数式、对数的运算法则,由,可得a=,b=,代入即可得出【解答】解:,a=,b=,则+=,故选D9. 常见的三阶魔方约有4.31019种不同的状态,将这个数记为A,二阶魔方有56038种不同的状态,将这个数记为B,则下列各数与最接近的是( )(参考数据:log3102
6、.1,)A. 0.63-28B. 0.61028C. 0.6328D. 0.6332【答案】C【解析】【分析】本题考查指、对数的运算以及对数的应用,考查了计算能力,属于基础题.由题意,从而,进而可求的近似值.【解答】解:因为,所以,所以故选C .10. 已知二次函数f(x)=x2-2x-4在区间-1,a)上的最小值为-5,最大值为-1,则实数a的取值范围是()A. 1,3)B. 1,3C. 1,+)D. (1,3【答案】D【解析】解:二次函数f(x)=x2-2x-4=(x-1)2-5,且f(x)在区间-1,a)上的最小值为-5,最大值为-1;又f(1)=-5,f(-1)=f(3)=-1,所以1
7、a3,即实数a的取值范围是(1,3故选:D判断函数f(x)在区间-1,a)上取得相应最值的自变量值,结合二次函数的对称性即可求解本题考查了二次函数的图象与性质的应用问题,结合函数的对称性求解是关键11. 已知函数在R上是增函数,则实数a的取值范围是( )A. 3a4B. 2a4C. 3a4D. 2a4【答案】A【解析】【分析】本题考查了分段函数单调性的判断,及运用求其满足的条件,加深了对单调性的定义的理解根据函数f(x)=在R上是增函数,可知每段上都为增函数,且两段的最值比较,得出,解出a的范围即可【解析】当x=2时,y=6-a,函数f(x)=在R上是增函数,解不等式组可得3a4,故选A.12
8、. 已知f(x)是定义在R上的奇函数,且对于定义域内任意的x均满足f(x+4)=f(x),当x(0,2)时,f(x)=2ex(e为自然对数的底数),则f(ln)=()A. 8B. 8C. 4D. 4【答案】A【解析】【分析】本题考查函数的奇偶性和周期性,属基础题目.【解答】解:因为,f(x+4)=f(x).所以.又f(x)是定义在R上的奇函数,所以,因为0ln42,所以f(ln4)=2eln4=8.即.故选A.13. 下列各组函数中,表示同一函数的是_(填序号)(1)y1,y (2) y,y(3)yx,y (4) y|x|,y2【答案】(3)【解析】【分析】本题考查函数的概念,属基础题,难度不
9、大.【解答】解:(1)中y1的定义域为R,y的定义域为x|x,不是同一函数;(2)y的定义域为,y的定义域为x|或,不是同一函数;(3)y与yx对应法则和定义域均相同,故这两个函数是同一函数;(4)y|x|的定义域为R,y2的定义域为,不是同一函数;故答案为(3)14. 已知x+x-1=5,则= _ 【答案】【解析】解:x+x-1=5,x0,()2=x+x-1+2=7,=故答案为:由已知利用()2=x+x-1+2求解本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用15. 若幂函数在上为减函数,则实数m的值是_.【答案】3【解析】【分析】本题主要考查幂函数,可直接根据定义
10、及性质列出关系式,故难度不大.【解答】解:因为函数y=(m2-2m-2)x-4m-2既是幂函数又是(0,+)的减函数,所以,解得:m=3故答案为316. 若集合A=x|ax2+ax+1=0中只有一个元素,则满足条件的实数a构成的集合为_【答案】4【解析】【分析】本题考查集合的求法,是基础题,解题时要认真审题,注意根的判别式的合理运用由已知得,由此能求出满足条件的实数a构成的集合【解答】解:集合A=x|ax2+ax+1=0中只有一个元素,解得a=4满足条件的实数a构成的集合为4故答案为417. 已知集合,全集,若,求实数的取值范围【答案】解:AB=A,AB,若A=,则a-12a+3,解得a-4;
11、若A,由AB,得到,解得:-1a,综上:a的取值范围是(-,-4-1,.【解析】此题考查了集合之间的包含关系的判断与应用,是基础题.由AB=A,得到AB,分A为空集与A不为空集两种情况求出a的范围即可.18. 计算:(1)()6+()-4()-80.25-(-2020)0(2)【答案】解:(1)()6+()-4()-80.25-(-2020)0=427+2-7-2-1=100(2)=1【解析】(1)利用有理指数幂的运算法则化简求解即可(2)利用对数的运算法则化简求解即可本题考查对数运算法则以及有理指数幂的运算法则的应用,考查计算能力19. 集合,(1)求;(2)若,求的取值范围【答案】解:(1
12、)由题意得,,则,故;(2)当,即时,符合题意;当,即时,由题意得,综上,.【解析】本题考查了集合的运算及集合关系中参数的取值范围,同是考查指数函数和对数函数的性质,属于中等题;(1)由指数函数的性质得出A,由对数函数的性质得出B,求出即可求解;(2)讨论C是否为空集求解即可.20. 已知函数f(x)=(1)判断并用定义证明函数f(x)在(-,1)上的单调性;(2)若f(x)在a,0(a0)上的最大值与最小值之差为2,求a的值【答案】解:(1)f(x)=2+在(-,1)上的单调递减,设1x1x2,则f(x1)-f(x2)=,=0,f(x1)f(x2),故f(x)在(-,1)上的单调递减,(2)
13、由(1)可知f(x)在a,0上的单调递减,故当x=a时,函数取得最大值f(a)=2,x=0时,函数取得最小值f(0)=-1,因此2+1=2,a=-2【解析】(1)结合单调性的定义即可判断,(2)结合(1)的单调性可求函数的最大值与最小值,即可求解本题主要考查了函数单调性的定义在单调性的判断中的应用及利用单调性求解函数的最值,属于基础试题21. 函数的定义域为设,求t的取值范围;求函数的值域【答案】解:()t=2x在x上单调递增,t, ;()函数可化为:f(x)=g(t)=t2-2t+3 ,g(t)在,1上单调递减,在(1,上单调递增,g()=,g()=5-,比较得g()g(),f(x)min=
14、g(1)=2,f(x)max=g()=5-,函数的值域为2,5-.【解析】本题考查了指数函数的值域的求法,指数函数与一元二次函数组成的复合函数的值域的求法,属于中档题.()由题意,可先判断函数t=2x,x单调性,再由单调性求出函数值的取值范围,易得;()由于函数f(x)=4x-2x+1+3是一个复合函数,可由t=2x,将此复合函数转化为二次函数g(t)=t2-2t+3,此时定义域为t,求出二次函数在这个区间上的值域即可得到函数f(x)的值域22. 临近年终,郑州一蔬菜加工点分析市场发现:当月产量在10吨至25吨时,月生产总成本y(万元)可以看成月产量x(吨)的二次函数,当月产量为10吨时,月总
15、成本为20万元,当月产量为15吨时,月总成本最低且为17.5万元(1)写出月总成本y(万元)关于月产量x(吨)的函数关系;(2)已知该产品销售价位每吨1.6万元,那么月产量为多少时,可获得最大利润,并求出最大利润【答案】解:(1)由题意可设:y=a(x-15)2+17.5(aR,a0),将x=10,y=20代入上式得:20=25a+17.5,解得,(10x25)(2)设利润为Q(x),则,(10x25),因为x=2310,25,所以月产量为23吨时,可获得最大利润12.9万元【解析】本题考查了二次函数的单调性及其应用,考查了推理能力与计算能力,属于中档题(1)由题意可设:y=a(x-15)2+17.5(aR,a0),将x=10,y=20代入上式解出即可得出(2)设利润为Q(x),则,(10x25),利用二次函数的单调性即可得出